Advertisement

Applied Physics B

, 125:33 | Cite as

Autler–Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser

  • Jiandong Bai
  • Jieying Wang
  • Shuo Liu
  • Jun He
  • Junmin WangEmail author
Article
  • 8 Downloads

Abstract

We demonstrate the single-photon excitation spectra of cesium Rydberg atoms by means of a Doppler-free purely all-optical detection with a room-temperature vapor cell and a 319 nm ultra-violet (UV) laser. We excite atoms directly from 6S1/2 ground state to 71P3/2 Rydberg state with a narrow-linewidth 319 nm UV laser. The detection of Rydberg states is performed by monitoring the absorption of an 852 nm probe beam in a V-type three-level system. With a strong coupling light, we observe the Autler–Townes doublet and investigate experimentally the dependence of the separation and linewidth on the coupling intensity, which is consistent with the prediction based on the dressed state theory. We further investigate the Rydberg spectra with an external magnetic field. The existence of non-degenerate Zeeman sub-levels results in the broadening and shift of the spectra. It has potential application in sensing magnetic field.

Notes

Acknowledgements

This project is supported by the National Key Research and Development Program of China (2017YFA0304502), the National Natural Science Foundation of China (61475091 and 11774210) and the Fund for Shanxi “1331 Project” Key Subjects Construction (1331KSC).

References

  1. 1.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  2. 2.
    M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2362 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Sedlacek, A. Schwettmann, H. Kubler, J.P. Shaffer, Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kumar, H. Fan, H. Kübler, A.J. Jahangiri, J.P. Shaffer, Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 25, 8625–8637 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    I. Lesanovsky, Many-body spin interactions and the ground state of a dense Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Boninsegni, N.V. Prokof’ev, Colloquium: supersolids: what and where are they? Rev. Mod. Phys. 84, 759 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A.W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, P. Zoller, Designing frustrated quantum magnets with laser-dressed Rydberg atoms. Phys. Rev. Lett. 114, 173002 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L.I.R. Gil, R. Mukherjee, E.M. Bridge, M.P.A. Jones, T. Pohl, Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Johnson, S.L. Rolston, Interactions between Rydberg-dressed atoms. Phys. Rev. A 82, 033412 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.-Y. Jau, A.M. Hankin, T. Keating, I.H. Deutsch, G.W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys. 12, 71–74 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J. Choi, T. Pohl, I. Bloch, C. Gross, Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Lee, M.J. Martin, Y.-Y. Jau, T. Keating, I.H. Deutsch, G.W. Biedermann, Demonstration of the Jaynes–Cummings ladder with Rydberg-dressed atoms. Phys. Rev. A 95, 041801(R) (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. Arias, G. Lochead, S. Helmrich, S. Whitlock, Realization of a Rydberg-dressed atomic clock. arXiv:1810.04151v1 [physics.atom-ph]
  14. 14.
    S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Braje, V. Balić, S. Goda, G.Y. Yin, S.E. Harris, Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett. 93, 183601 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    U. Raitzsch, R. Heidemann, H. Weimer, B. Butscher, P. Kollmann, R. Löw, H.P. Büchler, T. Pfau, Investigation of dephasing rates in an interacting Rydberg gas. New J. Phys. 11, 055014 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    E.H. Ahmed, S. Ingram, T. Kirova, O. Salihoglu, J. Huennekens, J. Qi, Y. Guan, A.M. Lyyra, Quantum control of the spin-orbit interaction using the Autler-Townes effect. Phys. Rev. Lett. 107, 163601 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Bounds, N.C. Jackson, R.K. Hanley, R. Faoro, E.M. Bridge, P. Huillery, M.P.A. Jones, Rydberg-dressed magneto-optical trap. Phys. Rev. Lett. 120, 183401 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    U.D. Rapol, V. Natarajan, Doppler-free spectroscopy in driven three-level systems. Eur. Phys. J. D 28, 317–322 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Q.B. Liang, B.D. Yang, J.F. Yang, T.C. Zhang, J.M. Wang, Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms. Chin. Phys. B 19, 113207 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    B.K. Teo, D. Feldbaum, T. Cubel, J.R. Guest, P.R. Berman, G. Raithel, Autler–Townes spectroscopy of the 5S1/2-5P3/2-44D cascade of cold 85Rb atoms. Phys. Rev. A 68, 053407 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    H. Zhang, L.M. Wang, J. Chen, S.X. Bao, L.J. Zhang, J.M. Zhao, S.T. Jia, Autler–Townes splitting of a cascade system in ultracold cesium Rydberg atoms. Phys. Rev. A 87, 033835 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, T. Becker, Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser. Opt. Lett. 34, 1621–1623 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009)CrossRefGoogle Scholar
  26. 26.
    S.X. Bao, H. Zhang, J. Zhou, L.J. Zhang, J.M. Zhao, L.T. Xiao, S.T. Jia, Polarization spectra of Zeeman sublevels in Rydberg electromagnetically induced transparency. Phys. Rev. A 94, 043822 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    H. Cheng, H.M. Wang, S.S. Zhang, P.P. Xin, J. Luo, H.P. Liu, High resolution electromagnetically induced transparency spectroscopy of Rydberg 87Rb atom in a magnetic field. Opt. Express 25(26), 33575–33587 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Hankin, Rydberg excitation of single atoms for applications in quantum information and metrology. Ph.D thesis, University of New Mexico (2014)Google Scholar
  29. 29.
    J.Y. Wang, J.D. Bai, J. He, J.M. Wang, Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser. J. Opt. Soc. Am. B 33, 2020–2025 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Bai, J.Y. Wang, J. He, J.M. Wang, Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultrastable optical cavity. J. Opt. 19, 045501 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    C. Wieman, T.W. Hänch, Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170–1173 (1976)ADSCrossRefGoogle Scholar
  32. 32.
    D.A. Steck, Cesium D Line Data, 9–10 (2010). https://steck.us/alkalidata/cesiumnumbers.pdf
  33. 33.
    G.S. Agarwal, Nature of the quantum interference in electromagnetic-field-induced control of absorption. Phys. Rev. A 55, 2467–2470 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    S. Menon, G.S. Agarwal, Gain components in the Autler–Townes doublet from quantum interferences in decay channels. Phys. Rev. A 61, 013807 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    T. Baluktsian, Rydberg interaction between thermal atoms: Van der Waals-type Rydberg–Rydberg interaction in a vapor cell experiment. Ph.D. thesis, University of Stuttgart (2013)Google Scholar
  36. 36.
    A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Y.C. Jiao, X.X. Han, Z.W. Yang, J.K. Li, G. Raithel, J.M. Zhao, S.T. Jia, Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields. Phys. Rev. A 94, 023832 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, M. Auzinsh, Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment. J. Opt. Soc. Am. B 31, 1046–1053 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    S.X. Bao, W.G. Yang, H. Zhang, L.J. Zhang, J.M. Zhao, S.T. Jia, Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field. J. Phys. Soc. Jpn. 84, 104301 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Zhang, S.X. Bao, H. Zhang, G. Raithel, J.M. Zhao, L.T. Xiao, S.T. Jia, Nonlinear Zeeman effect, line shapes and optical pumping in electromagnetically induced transparency. arXiv:1702.04842v1 [physics.atom-ph]
  41. 41.
    J.Y. Wang, J.D. Bai, J. He, J.M. Wang, Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell. Opt. Express 25, 22510–22518 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Bai, S. Liu, J.Y. Wang, J. He, J.M. Wang, DC electric field sensing by using of 319 nm UV single-photon Rydberg excitation spectroscopy of cold cesium atoms. arXiv:1811.05092v1 [physics.atom-ph]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiandong Bai
    • 1
    • 2
  • Jieying Wang
    • 1
    • 2
  • Shuo Liu
    • 1
    • 2
  • Jun He
    • 1
    • 2
    • 3
  • Junmin Wang
    • 1
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina
  2. 2.Institute of Opto-ElectronicsShanxi UniversityTaiyuanChina
  3. 3.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations