Advertisement

Applied Physics B

, 125:39 | Cite as

Pump- and temperature-induced repetition frequency response study in hybrid mode-locked erbium fiber laser with distributed polarizer

  • Stanislav O. Leonov
  • Vasilii S. Voropaev
  • Alexander A. KrylovEmail author
Article
  • 20 Downloads

Abstract

We report a study on pump- and temperature-induced repetition frequency response in hybrid mode-locked stretched-pulse erbium fiber laser with distributed polarizer. For the first time to the best of our knowledge, we have shown frequency-dependent loss (FDL) contribution to pump-induced repetition frequency response behavior. FDL originates from wavelength-dependent saturation of nonlinear polarization evolution (NPE) mechanism which is inherent to stretched-pulse regime of operation. We have proposed an analytical model adequately describing NPE influence on pump-induced repetition frequency response. As it is observed, NPE-induced contribution substantially dominates over other physical perturbations leading to strictly different pump-induced repetition frequency response behavior compared to erbium fiber soliton laser.

Notes

Acknowledgements

The Authors are grateful to S. G. Sazonkin from Bauman Moscow State Technical University for the help in Erbium fiber laser development and its characteristics measurement also with A. K. Senatorov from Fiber Optics Research Center of the RAS for fibers GVD measurement. Authors also thank V. A. Lazarev and D. A. Shelestov from Bauman Moscow State Technical University for fruitful discussions and technical support. SOL acknowledge the RFBR, according to the research project No. 16-38-60147 mol_a_dk for the support of the experimental measurements. VSV and AAK acknowledge the Russian Science Foundation (Project No. 16-19-10694) for the support of theoretical research.

References

  1. 1.
  2. 2.
  3. 3.
    J. Kim, Y. Song, Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon. 8, 465–540 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, F. Tauser, Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. Opt. Express 12, 5872–5880 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D.V. Seletskiy, A. Leitenstorfer, Free-running performance and full control of a passively phase-stable er:fiber frequency comb. Optica 2, 917–923 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Lim, K. Knabe, K.A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P.S. Light, F. Benabid, J.C. Knight, K.L. Corwin, J.W. Nicholson, B.R. Washburn, A phase-stabilized carbon nanotube fiber laser frequency comb. Opt. Express 17, 14115–14120 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    N. Kuse, J. Jiang, C.-C. Lee, T.R. Schibli, M. Fermann, All polarization-maintaining er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Opt. Express 24, 3095–3102 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. McCracken, J.M. Charsley, D.T. Reid, A decade of astrocombs: recent advances in frequency combs for astronomy. Opt. Express 25, 15058–15078 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    N.R. Newbury, W.C. Swann, Low-noise fiber-laser frequency combs (invited). J. Opt. Soc. Am. B 24, 1756–1770 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    N.R. Newbury, B.R. Washburn, Theory of the frequency comb output from a femtosecond fiber laser. IEEE J. Quantum Electron. 41, 1388–1402 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    B.R. Washburn, W.C. Swann, N.R. Newbury, Response dynamics of the frequency comb output from a femtosecond fiber laser. Opt. Express 13, 10622–10633 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    T. Walbaum, M. Löser, P. Gross, C. Fallnich, Mechanisms in passive synchronization of erbium fiber lasers. Appl. Phys. B 102, 743–750 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Krylov, S.G. Sazonkin, V.A. Lazarev, D.A. Dvoretskiy, S.O. Leonov, A.B. Pnev, V.E. Karasik, V.V. Grebenyukov, A.S. Pozharov, E.D. Obraztsova, E.M. Dianov, Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer. Laser Phys. Lett. 12, 065001 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Krylov, S.G. Sazonkin, N.R. Arutyunyan, V.V. Grebenyukov, A.S. Pozharov, D.A. Dvoretskiy, E.D. Obraztsova, E.M. Dianov, Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking. J. Opt. Soc. Am. B 33, 134–142 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    D.S. Chernykh, A.A. Krylov, A.E. Levchenko, V.V. Grebenyukov, N.R. Arutunyan, A.S. Pozharov, E.D. Obraztsova, E.M. Dianov, Hybrid mode-locked erbium-doped all-fiber soliton laser with adistributed polarizer. Appl. Opt. 53, 6654–6662 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    L. Nelson, D. Jones, K. Tamura, H. Haus, E. Ippen, Ultrashort-pulse fiber ring lasers. Appl. Phys. B 65, 277–294 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Rieger, T. Hellwig, T. Walbaum, C. Fallnich, Optical repetition rate stabilization of a mode-locked all-fiber laser. Opt. Express 21, 4889–4895 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G.B. Hocker, Fiber-optic sensing of pressure and temperature. Appl. Opt. 18, 1445–1448 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber. Chin. J. Phys. 38, 437–443 (2000)Google Scholar
  21. 21.
    Corning smf-28e+ optical fiber product information, (2018)Google Scholar
  22. 22.
    V. Lazarev, A. Krylov, D. Dvoretskiy, S. Sazonkin, A. Pnev, S. Leonov, D. Shelestov, M. Tarabrin, V. Karasik, A. Kireev, M. Gubin, Stable similariton generation in an all-fiber hybrid mode-locked ring laser for frequency metrology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1028–1033 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Shen, B. He, J. Zhao, Y. Liu, D. Bai, K. Yang, C. Wang, G. Liu, D. Luo, F. Liu et al., Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity. Appl. Phys. Lett. 106, 031117 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yatsenko, A. Mavritsky, D-scan measurement of nonlinear refractive index in fibers heavily doped with geo2. Opt. Lett. 32, 3257–3259 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H.A. Haus, J.G. Fujimoto, E.P. Ippen, Analytic theory of additive pulse and kerr lens mode locking. IEEE J. Quantum Electron. 28, 2086–2096 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    I.N. Duling III, I.N. Duling, Compact sources of ultrashort pulses, vol. 18 (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  27. 27.
    M.E. Fermann, A. Galvanauskas, G. Sucha, Ultrafast lasers: technology and applications (Marcel Dekker, New York, 2001)Google Scholar
  28. 28.
    N.J. Doran, D. Wood, Nonlinear-optical loop mirror. Opt. Lett. 13, 56–58 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Fiber Optics Research Center of the Russian Academy of SciencesMoscowRussia

Personalised recommendations