Advertisement

Applied Physics B

, 125:40 | Cite as

Analytical thermal modeling of graphene-clad microfiber as a saturable absorber in ultrafast fiber lasers

  • Vahid Ashoori
  • Mahdi ShayganmaneshEmail author
Article
  • 5 Downloads

Abstract

In this paper, thermal problem in graphene-clad microfiber (GCM) generated due to the interaction of laser evanescent field with graphene is studied theoretically. Heat-differential equation governs in GCM which is usually applied as a saturable absorber in mode-locked fiber lasers is studied by analytical method. A three-dimensional expression for temperature is presented by considering all of effective parameters in real problem. The results will pave the way for more researches on thermal effects on GCM nonlinearities, self-focusing, thermal phase shift, and self-phase modulation. Furthermore, the highest pump power to remain in thermal operational range as well as the thermal damage threshold are presented as the necessary criteria for laser design.

Notes

References

  1. 1.
    J.J. Veselka, S.K. Korotky, Multiwavelength source having precise channel spacing for WDM systems. IEEE Photon. Technol. Lett. 10, 958 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Rota-Rodrigo, M. Ibañez, A. López-Amo, Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer. Appl. Phys. B 110, 303 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    H. Young, T.V.A. Tran, K. Sang, L. Sang, Multiwavelength raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Opt. Lett. 30, 1282 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    M. Azimipour, R. Pashaie, Nonlinear optical signal processing on multiwavelength sensitive materials. Opt. Lett. 38, 4324 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    X. Liu, X. Yao, Y. Cu, Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang, Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep. 3, 2718 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    X. Liu, Y. Cui, D. Han, X. Yao, Z. Sun, Distributed ultrafast fibre laser. Sci. Rep. 5, 9101 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Rui, C. Hong-Wei, C. Sheng-Ping, H. Jing, L. Qi-Sheng, SESAM passively mode-locked fiber laser with a long cavity including a band pass filter. J. Opt. 13, 2040 (2011)Google Scholar
  10. 10.
    L. Zhiguo, Y. Zhi, L. Feng, Y. Xiaojun, T. Shukui, Y. Yang, L. Qianglong, W. Yishan, Z. Wei, SESAM mode-locked all-polarization maintaining fiber linear cavity ytterbium laser source with spectral filter as pulse shaper, Laser Phys. 28, 125103 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photon 10, 227 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    N. Park, H. Jeong, S. Choi, M. Kim, F. Rotermund, D. Yeom, Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking. Opt. Express 23, 19806 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    L.E. Adams, E.S. Kintzer, M. Ramaswamy, J.G. Fujimoto, U. Keller, M.T. Asom, Mode locking of a broad-area semiconductor laser with a multiple-quantum-well saturable absorber. Opt. Lett. 18, 1940 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    X. Ning, D.G. Mircea, A.M. Vainionpää, J. Lyytikäinen, S. Suomalainen, M.J. Saarinen, O. Okhotnikov, T. Sajavaara, J. uhani Keinonen, Broadband semiconductor saturable absorber mirrors in the 1.55-µm wavelength range for pulse generation in fiber lasers. IEEE J. Quant. 38, 369 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    X.H. Li, Y.G. Wang, Y.S. Wang, Y.Z. Zhang, K. Wu, P.P. Shum, X. Yu, Y. Zhang, Q.J. Wang, All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber. Laser Phys. Lett 10, 75108 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang, Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4, 6346 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Dong, W. Yadong, M. Chaojie, H. Lei, J. Biqiang, G. Xuetao, H. Shijia, Z. Wending, M. Ting, J. Zhao, WS2 mode-locked ultrafast fiber laser. Sci. Rep. 5, 7965 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Sobon, Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators. Photon. Res. 3, A56 (2015)CrossRefGoogle Scholar
  19. 19.
    X.M. Liu, H.R. Yang, Y.D. Cui, G.W. Chen, Y. Yang, X.Q. Wu, X.K. Yao, D.D. Han, X.X. Han, C. Zeng, J. Guo, W.L. Li, G. Cheng, L.M. Tong, Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 6, 26024 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    V. Ashoori, M. Shayganmanesh, Thermal nonlinear refractive index of graphene based saturable absorber in mode-locked fiber lasers. Mater. Res. Express 6, 015609 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    G. Demetriou, H. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, A.K. Ka, Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express 24, 13033 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J. Holman, Heat Transfer (McGraw-Hill Science, New York, 2001)Google Scholar
  24. 24.
  25. 25.
    Single mode optical fiber. Thorlabs, https://www.thorlabs.com/_SD-Popup.cfm?partnumber=SM980-5.8-125&pageId=949
  26. 26.
    ISO 11357-2, Plastics – Differential scanning calorimetry – Part 2: Determination of glass transition temperature (1999). https://www.iso.org/standard/25545.html
  27. 27.
    Fluoride fiber Technology, FiberLabs Inc. https://www.fiberlabs.com/glossary/technology/
  28. 28.
    T. Liu, Z. Yang, S. Xu, 3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. Opt. Express 17, 235 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    V. Ashoori, M. Shayganmanesh, S. Radmard, Heat Generation and Removal in Solid State Lasers (InTech, Rijeka, Croatia, 2012)CrossRefGoogle Scholar
  30. 30.
    V. Ashoori, A. Malakzadeh, Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers. J. Phys. D Appl. Phys. 44, 355103 (2011)CrossRefGoogle Scholar
  31. 31.
    W. Koechner, Solid-State Laser Engineering (Springer, New York, 2006)zbMATHGoogle Scholar
  32. 32.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2007)zbMATHGoogle Scholar
  33. 33.
    Y.R. Shen, G.Z. Yang, Theory of Self-Phase Modulation and Spectral Broadening. In: R.R. Alfano ed., The supercontinuum laser source, (Springer, New York, NY, 1989)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations