Advertisement

Applied Physics B

, 125:43 | Cite as

Axial scanning in lensless microscopy to achieve high resolution

  • Anwar Hussain
  • Yicheng Li
  • Diyi Liu
  • Yinxu Bian
  • Cuifang Kuang
  • Xu LiuEmail author
Article
  • 70 Downloads

Abstract

The optical system is designed here, to miniaturize the mechanical scanning and number of phase patterns illumination in lensless microscopy. The random phase mask is positioned in vertical column before the sample, which encoded the sample information and resulted into a final image at the sensor plane. To improve the signal to noise ratio and resolution of final image, the axial direction scanning of sample and sensor (SS) is performed while keeping them mutually immovable. This operation gathered the lost information of sample in between the sample and sensor planes. This axial motion of SS is performed with periodic steps, which would help in the reconstruction process during post processing. The final image has resolution of about 4 µm and field of view of 15 mm2. There are numerous advantages of such type of techniques, including portability and fast processing of data.

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFF0101400); National Natural Science Foundation of China (6171101129, 61427818, 61827825, and 61735017).

References

  1. 1.
    J.W. Goodman, Introduction to fourier optics (McGraw-Hill, 1968)Google Scholar
  2. 2.
    X. Zhang, I. Khimji, U.A. Gurkan, U.A.H. Safaee, P.N. Catalano et al., Lab Chip 11, 2535–2540 (2011)CrossRefGoogle Scholar
  3. 3.
    G. Jin, I.-H. Yoo, S.P. Pack, J.-W. Yang, U.-H. Ha et al., Biosens. Bioelectron. 38, 126–131 (2012)CrossRefGoogle Scholar
  4. 4.
    L.M. Lee, X. Cui, C. Yang, Biomed. Microdevices 11, 5 (2009)Google Scholar
  5. 5.
    A.F. Coskun, T.-W. Su and A. Ozcan: Lab Chip, 10(2010)Google Scholar
  6. 6.
    B. Khademhosseinieh, G. Biener, I. Sencan, A. Ozcan, Appl. Phys. Lett. 97, 21 (2010)Google Scholar
  7. 7.
    I. Sencan, A.F. Coskun, U. Sikora, A. Ozcan, Sci. Rep. 4, 3760 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    T.-W. Su, S.O. Isikman, W. Bishara, D. Tseng, A. Erlinger, A. Ozcan, Opt. Exp. 18, 9 (2010)Google Scholar
  9. 9.
    W. Luo, A. Greenbaum, Y. Zhang, A. Ozcan, Light Sci. Appl. 4, e261 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    W. Bishara, T.-W. Su, A.F. Coskun, A. Ozcan, Opt. Exp 18, 11 (2010)Google Scholar
  11. 11.
    G. Zheng, S.A. Lee, S. Yang, C. Yan, Lab Chip 10, 22 (2010)Google Scholar
  12. 12.
    S. Bernet, W. Harm, A. Jesacher, M. Ritsch-Marte: Opt. Exp. 19, 25 (2011)Google Scholar
  13. 13.
    W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte: Opt. Exp. 22, 18 (2014)Google Scholar
  14. 14.
    A. Hussain, Y. Li, D. Liu, C. Kuang, X. Liu, Sci. Rep 7, 14768 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    A. Hussain, Y. Li, D. Liu, C. Kuang, X. Liu, J. Biomed. Opt. 22, 11 (2017)CrossRefGoogle Scholar
  16. 16.
    W. Luo, Y. Zhang, Z. Göröcs, A. Feizi, A. Ozcan, Sci. Rep 6, 22738 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anwar Hussain
    • 1
    • 2
  • Yicheng Li
    • 2
  • Diyi Liu
    • 2
  • Yinxu Bian
    • 2
  • Cuifang Kuang
    • 2
    • 3
  • Xu Liu
    • 2
    • 3
    Email author
  1. 1.Quantum Optics Lab, Department of PhysicsCOMSATS UniversityIslamabadPakistan
  2. 2.State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations