Advertisement

Applied Physics B

, 125:35 | Cite as

Polarization variations of intense laser pulse in ionizing medium by a strong magnetic field

  • Xiaofang Shu
  • Chengxin Yu
  • Jie LiuEmail author
Article
  • 11 Downloads

Abstract

In this work, we theoretically investigate the influence of an external strong magnetic field on the polarization of an intense laser pulse that propagates in a gaseous medium. The simulations indicate that the laser polarization dramatically depends on the direction of the strong magnetic field, and some striking symmetries of the energy transfer and the temporal profiles of the output laser pulse are observed. Microanalyses, such as electron velocity distributions, are made to explain these phenomena. The findings in this work show great potential in investigating the feedback of self-generated strong magnetic field to the intense laser-plasma interaction itself.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 11274051, No. 11374040, No. 11475027, No. 11575027, No. 11674034, and No. 11775030), and the China Postdoctoral Science Foundation funded project (No. 2016M590066).

Supplementary material

340_2019_7145_MOESM1_ESM.avi (15.1 mb)
Supplementary material 1 (avi 15511 KB)

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. Lond. 136, 1–20 (1846)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Mao, B.M. Gaensler, M. Haverkorn et al., Astrophys. J. 714, 1170 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Stamper, B.H. Ripin, Phys. Rev. Lett. 34, 138 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Stamper, E.A. McLean, B.H. Ripin, Phys. Rev. Lett. 40, 1177 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    S. Fujioka, Z. Zhang, K. Ishihara et al., Sci. Rep. 3, 1170 (2013)CrossRefGoogle Scholar
  6. 6.
    M.C. Kaluza, H.P. Schlenvoigt, S.P.D. Mangles, Phys. Rev. Lett. 105, 115002 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Buck, M. Nicolai, K. Schmid et al., Nat. Phys. 7, 543 (2011)CrossRefGoogle Scholar
  8. 8.
    C.X. Yu, J. Liu, Phys. Rev. A 90, 043834 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    L. Biermann, Z. Naturforsch A 5, 65 (1950)ADSMathSciNetGoogle Scholar
  10. 10.
    E.S. Weibel, Phys. Rev. Lett. 2, 83 (1959)ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Huntington, F. Fiuza, J.S. Ross et al., Nat. Phys. 11, 173 (2015)CrossRefGoogle Scholar
  12. 12.
    C.M. Huntington, F. Fiuza, J.S. Ross et al., Phys. Plasmas 24, 041410 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. Deschamps, M. Fitaire, M. Lagoutte, Phys. Rev. Lett. 25, 1330 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    T.V. Liseykina, S.V. Popruzhenko, A. Macchi, New J. Phys. 18, 072001 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M. Gradov, L. Stenflo, Phys. Lett. A 95, 233–234 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    T. Lehner, Phys. Scr. 49, 704 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    L.V. Keldysh, Zh. Éksp. Teor. Fiz 47, 1945 (1964)Google Scholar
  18. 18.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1964)Google Scholar
  19. 19.
    J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, 2007)zbMATHGoogle Scholar
  20. 20.
    X.F. Shu, S.B. Liu, Appl. Phys. B 120, 697 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S.E. Segre, Plasma Phys. Control. Fusion 41, R57 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingChina
  2. 2.Institute of Applied Physics and Computational MathematicsBeijingChina
  3. 3.Center for Applied Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations