Advertisement

Applied Physics B

, 125:34 | Cite as

Optimization of laser-based synchrotron X-ray for plant imaging

  • S. FourmauxEmail author
  • E. Hallin
  • P. G. Arnison
  • J. C. Kieffer
Article
  • 46 Downloads

Abstract

X-ray computed tomography of plants requires a high number of X-ray photons, good source stability, and a large field of view. We show that we can optimize a laser-based synchrotron X-ray source for this application. The X-ray beam is produced during electron acceleration by laser wakefield. These results were obtained using 160 TW on-target laser peak power, \(4.6\times 10^{19}\,\text {W cm}^{-2}\) laser pulse intensity, and nitrogen gas target. We measured a critical energy \(\sim\) 15 keV, enough X-ray photons to realize an image with one single laser shot, more than 50 mrad divergence, a good shot to shot stability and spatial distribution homogeneity required for tomography imaging. The gas jet target pressure is low enough to use the laser system at the laser nominal repetition rate (2.5 Hz). We produced a micrometer X-ray source size that allows high resolution (< 20 \(\upmu\)m) and phase contrast imaging.

Notes

Acknowledgements

We thank ALLS technical team: Guy Lebrun, Joël Maltais, Stéphane Payeur, and Léonard Pelletier for the excellent support and help. We thank Dr. Raju Soolanayakanahally, Agriculture and Agri-Food Canada, Saskatoon (Saskatchewan), and Dr. Mike Dixon and Newton Tran, Controlled Environment System Research Facility, University of Guelph (Ontario) for providing the poplars and for discussions. We acknowledge Dr S. MacLean for his support and for discussions. The ALLS facility was funded and supported by the Canadian Foundation for Innovation (CFI), Institute for Quantum Computing (Ontario), University of Waterloo (Ontario), INRS, and Ministère de l’Économie, de la Science et de l’Innovation (MESI) from Québec. This work is funded by CFI, NSERC, the Canada Research Chair program, and the Canada First Research Excellence Fund through the Plant Phenotyping Imaging Research Centre from the Global Institute for Food Security and University of Saskatchewan (Saskatchewan).

References

  1. 1.
    J.C. Kieffer, S. Fourmaux, E. Hallin, P. Arnison, N. Brereton, F. Pitre, M. Dixon, N. Tran, Application of laser-wakefield-based x-ray source to global food security issues. Proc. SPIE 10239, 1–7 (2017)Google Scholar
  2. 2.
    A. Pierret, C.J. Moran, C. Doussan, Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol. 166(3), 967–980 (2005)CrossRefGoogle Scholar
  3. 3.
    U.G. Hacke, L. Plavcov, A. Almeida-Rodriguez, S. King-Jones, W. Zhou, J.E.K. Cooke, Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol. 30(8), 1016–1025 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Skarzynski, Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices. Acta Crystallogr. Sect. D 69(7), 1283–1288 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Preissner, R.P. Murrie, I. Pinar, F. Werdiger, R.P. Carnibella, G.R. Zosky, A. Fouras, S. Dubsky, High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals. Phys. Med. Biol. 63(8), 08NT03 (2018)CrossRefGoogle Scholar
  6. 6.
    K.T. Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.-P. Rousseau, F. Burgy, B. Mercier, A. Rousse, Imaging electron trajectories in a laser-wakefield cavity using betatron x-ray radiation. Phys. Rev. Lett. 97, 225002 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M.Z. Mo, Z. Chen, S. Fourmaux, A. Saraf, S. Kerr, K. Otani, R. Masoud, J.-C. Kieffer, Y. Tsui, A. Ng, R. Fedosejevs, Measurements of ionization states in warm dense aluminum with betatron radiation. Phys. Rev. E 95, 053208 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, On the possibilities of xray phase contrast microimaging by coherent high energy synchrotron radiation. Rev. Sci. Instrum. 66(12), 5486–5492 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Phase-contrast imaging using polychromatic hard x-rays. Nature 384(6607), 335–338, 11 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, V. Chvykov, F. Dollar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C.A.J. Palmer, J. Schreiber, K. Ta Phuoc, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick, Z. Najmudin, Bright spatially coherent synchrotron x-rays from a table-top source. Nat. Phys. 6(12), 980–983, 12 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Fourmaux, S. Corde, K. Ta Phuoc, P.M. Leguay, S. Payeur, P. Lassonde, S. Gnedyuk, G. Lebrun, C. Fourment, V. Malka, S. Sebban, A. Rousse, J.C. Kieffer, Demonstration of the synchrotron-type spectrum of laser-produced betatron radiation. New J. Phys. 13(3), 033017 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Fourmaux, S. Corde, K. Ta Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, J .C. Kieffer, Single shot phase contrast imaging using laser-produced Betatron x-ray beams. Opt. Lett. 36(13), 2426-8 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kneip, C. McGuffey, F. Dollar, M.S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, Z. Najmudin, C.A.J. Palmer, J. Schreiber, W. Schumaker, A.G.R. Thomas, V. Yanovsky, X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99(9), 093701 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer, S. Karsch, Quantitative x-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun. 6, 7568 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Cole, J.C. Wood, N.C. Lopes, K. Poder, R.L. Abel, S. Alatabi, J.S.J. Bryant, A. Jin, S. Kneip, K. Mecseki, D.R. Symes, S.P.D. Mangles, Z. Najmudin, Laser-wakefield accelerators as hard x-ray sources for 3d medical imaging of human bone. Sci. Rep. 5, 13244 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    N. Hafz, T.M. Jeong, I.W. Choi, S.K. Lee, K.H. Pae, V. Kulagin, J.H. Sung, T.J. Yu, K.-H. Hong, T. Hosokai, J.R. Cary, D.-K. Ko, J. Lee, Stable generation of gev-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2, 571 (2008)CrossRefGoogle Scholar
  18. 18.
    C. McGuffey, A.G.R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F.J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, VYu. Bychenkov, I.V. Glazyrin, A.V. Karpeev, Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Pak, K.A. Marsh, S.F. Martins, W. Lu, W.B. Mori, C. Joshi, Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Clayton, J.E. Ralph, F. Albert, R.A. Fonseca, S.H. Glenzer, C. Joshi, W. Lu, K.A. Marsh, S.F. Martins, W.B. Mori, A. Pak, F.S. Tsung, B.B. Pollock, J.S. Ross, L.O. Silva, D.H. Froula, Self-guided laser wakefield acceleration beyond 1 gev using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M.Z. Mo, A. Ali, S. Fourmaux, P. Lassonde, J.C. Kieffer, R. Fedosejevs, Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen. Appl. Phys. Lett. 100(7), 1–3 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Huang, D.Z. Li, W.C. Yan, M.H. Li, M.Z. Tao, Z.Y. Chen, X.L. Ge, F. Liu, Y. Ma, J.R. Zhao, N.M. Hafz, J. Zhang, L.M. Chen, Simultaneous generation of quasi-monoenergetic electron and betatron x-rays from nitrogen gas via ionization injection. Appl. Phys. Lett. 105(20), 204101 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Huang, Y.F. Li, D.Z. Li, L.M. Chen, M.Z. Tao, Y. Ma, J.R. Zhao, M.H. Li, M. Chen, M. Mirzaie, N. Hafz, T. Sokollik, Z.M. Sheng, J. Zhang, Resonantly enhanced betatron hard x-rays from ionization injected electrons in a laser plasma accelerator. Sci. Rep. 6, 27633 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Ferri, X. Davoine, S. Fourmaux, J.C. Kieffer, S. Corde, K. Ta Phuoc, A. Lifschitz, Effect of experimental laser imperfections on laser wakefield acceleration and betatron source. Sci. Rep. 6, 27846 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.C. Kieffer, S. Fourmaux, E. Hallin, Laser wakefield driven x-ray sources in canada: a brillant future for agriculture and global food security. Proc. SPIE 10760, 10760 (2018)Google Scholar
  27. 27.
    S. Schmidt, A.G. Bengough, P.J. Gregory, D.V. Grinev, W. Otten, Estimating rootsoil contact from 3d x-ray microtomographs. Eur. J. Soil Sci. 63(6), 776–786 (2012)CrossRefGoogle Scholar
  28. 28.
    S.R. Tracy, C.R. Black, J.A. Roberts, C. Sturrock, S. Mairhofer, J. Craigon, S.J. Mooney, Quantifying the impact of soil compaction on root system architecture in tomato (solanum lycopersicum) by x-ray micro-computed tomography. Ann. Bot. 110(2), 511–519 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut National de la Recherche Scientifique, Énergie, Matériaux et TélécommunicationsUniversité du Québec (INRS-EMT)VarennesCanada
  2. 2.Global Institute for Food Security, 110 Gymnasium PlaceUniversity of SaskatchewanSaskatoonCanada
  3. 3.Botanical Alternatives Inc.SaskatoonCanada

Personalised recommendations