Advertisement

Applied Physics B

, 125:26 | Cite as

Criterion of globally complete chaos synchronization for diverse three-node VCSEL networks with coupling delays

  • D. Z. ZhongEmail author
  • Z. Z. Xiao
  • G. Z. Yang
Article
  • 29 Downloads

Abstract

For diverse three node vertical-cavity surface-emitting laser (VCSEL) networks with uniform time-delayed coupling, we propose a new criterion of the globally complete chaos synchronization (GCCS) among all node lasers using the mater-stability function (MSF). Here, the MSF can be obtained by calculating the maximum Lyapunov exponent (MLE) and MLE is calculated from the modified master stability equation. Note that the outer-coupling matrixes have a nonzero row sum (nondiffusive coupling) and the inner-coupling is a function of the self-node and delay connection node. It is found that GCCS can be achieved for an arbitrarily given three-node VCSEL networks when two points determined by the constant row sum and two transversal eigenvalues fall into the region of stability where MLE is negative and the MLE as a function of the constant row sum and the eigenvalue associated to perturbations within the synchronization manifold is positive. Based on the theoretical criterion and synchronization error theory, we further explore the synchronization properties in three-node VCSEL networks with the ring topology and that with the bus topology. As a result, the theoretical criterion is in excellent agreement with our numerical results, which indicate that the theoretical criterion is valid and feasible.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61475120), and the Major Projects of Basic Research and Applied Research for Natural Science in Guangdong province (Grant No. 2017KZDXM086).

References

  1. 1.
    Y.Z. Liu, Y.Y. Xie, Y.C. Ye, J.P. Zhang, S.J. Wang, Y. Liu, G.F. Pan, J.L. Zhang, IEEE Photon J. 9(1), 7900512 (2017)Google Scholar
  2. 2.
    J.G. Wu, Z.M. Wu, X. Tang, L. Fan, W. Deng, G.Q. Xia, I.E.E.E. Photon, Technol. Lett. 25(6), 587–590 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Deng, G.Q. Xia, Z.M. Wu, Nonlinear Dyn. 76(1), 399–407 (2014)CrossRefGoogle Scholar
  4. 4.
    J.X. Ke, L.L. Yi, G.Q. Xia, W.S. Hu, Opt. Lett. 43(6), 1323–1326 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov, Physics 52(12), 1213–1238 (2009)Google Scholar
  6. 6.
    J.G. Wu, Z.M. Wu, G.Q. Xia, T. Deng, X.D. Lin, X. Tang, G.Y. Feng, I.E.E.E. Photon, Technol. Lett. 23(24), 1854–1856 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Jiang, W. Pan, B. Luo, S. Xiang, L. Yang, I.E.E.E. Photon, Technol. Lett. 24(13), 1094–1096 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaykovich, I. Kanter, Phys. Rev. E 73(2), 066214 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M.W. Lee, J. Paul, C. Masoller, K.A. Shore, J. Opt. Soc. Am. B 23(5), 846–851 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Buldú, M.C. Torrent, J. García-Ojalvo, J. Lightwave Technol. 25(6), 1549–1554 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kestler, W. Kinzel, I. Kanter, Phys. Rev. E 76(2), 035202 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    R. Vicente, I. Fischer, C.R. Mirasso, Phys. Rev. E 78(6), 066202 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    N. Jiang, W. Pan, L. Yan, B. Luo, W. Zhang, S. Xiang, L. Yang, D. Zheng, J. Lightwave Technol. 28(13), 1978–1986 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, I. Kanter, Opt. Express 20(4), 4352–4359 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Jeeva Sathya Theesar, M.R.K. Ariffin, S. Banerjee, Opt. Laser Technol. 54(54), 15–21 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85(1), 421–470 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80(10), 2109–2112 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M. Manju Shrii, D.V. Senthilkumar, J. Kurths, EPL 98(1), 285–304 (2012)CrossRefGoogle Scholar
  19. 19.
    D.G. Yang, C.Y. Hu, in Proceedings of IEEE Conference on Intelligent Control and Automation (2008), pp. 8216–8221Google Scholar
  20. 20.
    V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Phys. Rev. Lett. 105(25), 254101–254104 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    H.J. Wang, L. Chen, C. Qiu, H.B. Huang, G.X. Qi, EPL 101(6), 60002 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    O. DHuys, S. Zeeb, T. Jüngling, S. Heiligenthal, S. Yanchuk, W. Kinzel, EPL 103(1), 10013 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    W.C. Yang, Z.G. Huang, X.G. Wang, L. Huang, L. Yang, Y.C. Lai, New J. Phys. 17(2), 023055 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    V. Flunkert, E. Schöll, Esaim Proc. 39, 40–48 (2013)CrossRefGoogle Scholar
  25. 25.
    M. San Miguel, Q. Feng, J.V. Moloney, Phys. Rev. A 52(2), 1728–1739 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A. Uchida, Optical Communication with Chaotic Lasers (Wiley, Weinheim, 2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Intelligent Manufacturing FacultyWuyi UniversityJiangmenChina

Personalised recommendations