Advertisement

Applied Physics B

, 125:28 | Cite as

Frequency upconversion mechanism in Ho3+/Yb3+-codoped TeO2–TiO2–La2O3 glasses

  • Gaurav Gupta
  • Sathravada Balaji
  • Kaushik Biswas
  • Kalyandurg AnnapurnaEmail author
Rapid Communication
  • 32 Downloads

Abstract

Frequency upconversion from Ho3+/Yb3+-codoped glass or crystal under Yb3+ sensitization is a known phenomenon. However, inconsistencies are prevalent in the understanding of double energy transfer mechanisms for Ho3+/Yb3+-codoped systems. In this context, rate equations are proposed for Ho3+/Yb3+-codoped low-phonon TeO2–TiO2–La2O3 glass under Yb3+ sensitization with continuous and pulsed excitations. The proposed rate equations are validated with experimental results to elucidate the mechanisms responsible for populating 5(S2, F4) and 5F5 energy levels of Ho3+ ion. The solutions of rate equations with experimental results are substantiating the occurrence of both excited state absorption (ESA) and energy transfer upconversion (ETU) mechanisms in populating Ho3+:5(S2, F4) level, though higher concentration of Ho3+ ion would decrease the probability of ETU and increase of ESA. In contrast, Ho3+:5F5 level has been populated via ETU only. Numerical solutions to the rate equations are also proposed to elucidate the mechanics for populating 5(S2, F4) and 5F5 levels of Ho3+ ion. The proposed rate equation for pulsed excitation explains the characteristics of respective decay curves, which are further used to quantify energy transfer coefficient (W02) as (1.77 ± 0.12) × 10− 17cm3 s−1 for Ho3+/Yb3+-codoped TTL glass host.

Notes

Acknowledgements

Authors would like to thank Dr. K. Muraleedharan, Director, CSIR-CGCRI, and Dr Ranjan Sen, Head, Glass Division, for their kind encouragement and permission to publish this work. One of the authors (GG) is thankful to BRNS/DAE for financial support in the form of SRF.

Supplementary material

340_2019_7139_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)

References

  1. 1.
    A. Diening, S. Kück:, J. Appl. Phys. 87, 4063 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, P. Solarz, T. Lukasiewicz, Appl. Phys. Lett. 79, 3026 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    R.K. Watts, J. Chem. Phys. 53, 3552 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Chamarro, R. Cases, J. Lumin. 42, 267 (1988)CrossRefGoogle Scholar
  5. 5.
    X. Wang, H. Lin, D. Yang, L. Lin, E. Yue-Bun Pun, J. Appl. Phys. 101, 113535 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Xu, X. Gao, L. Zheng, Z. Zhang, W. Cao, Opt. Express 20, 18127 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    X. Yu, Y. Qin, M. Gao, L. Duan, Z. Jiang, L. Gou, P. Zhao, Z. Li, J. Lumin. 153, 1 (2014)CrossRefGoogle Scholar
  8. 8.
    E. la Rosa, P. Salas, H. Desirena, C. Angeles, R.A. Rodriguez, Appl. Phys. Lett. 87, 241912 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Kiryanov, V. Aboites, A.M. Belovolov, M.I. Timoshechkin, M.I. Belovolov, M.J. Damzen, A. Minassian, Opt. Express 10, 832 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    D. Ni, W. Bu, S. Zhang, X. Zheng, M. Li, H. Xing, Q. Xiao, Y. Liu, Y. Hua, L. Zhou, W. Peng, K. Zhao, J. Shi, Adv. Funct. Mater. 24, 6613 (2014)CrossRefGoogle Scholar
  11. 11.
    S.D. Jackson, S. Mossman, Appl. Opt. 42, 3546 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, X. Zhang, J. Alloys Compd. 454, 510 (2008)CrossRefGoogle Scholar
  13. 13.
    X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, X. Zhang, J. Phys. Chem. Solids 68, 1566 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Simpson, W.E.K. Gibbs, S.F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, G.W. Baxter, Opt. Express 16, 13781 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S. Balaji, D. Ghosh, K. Biswas, G. Gupta, K. Annapurna, Phys. Chem. Chem. Phys. 18, 33115 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Di Bartolo, X. Chen, Advances in Energy Transfer Processes (World Scientific, Singapore, 2001)CrossRefGoogle Scholar
  17. 17.
    L. Gomes, D. Milanese, J. Lousteau, N. Boetti, S.D. Jackson, J. Appl. Phys. 109, 103110 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    G. Gupta, S. Balaji, K. Biswas, A. Kalyandurg, J. Am. Ceram. Soc. (2018).  https://doi.org/10.1111/jace.15558)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gaurav Gupta
    • 1
  • Sathravada Balaji
    • 1
  • Kaushik Biswas
    • 1
  • Kalyandurg Annapurna
    • 1
    Email author
  1. 1.Glass Science and Technology SectionCSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations