Skip to main content
Log in

Absolute SiO concentration imaging in low-pressure nanoparticle-synthesis flames via laser-induced fluorescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we present a strategy for imaging measurements of absolute concentration values of gas-phase SiO in the combustion synthesis of silica, generated from the reaction of hexamethyldisiloxane (HMDSO) precursor in a lean (ϕ = 0.6) hydrogen/oxygen/argon flame. The method is based on laser-induced fluorescence (LIF) exciting the Q(42) rotational transition within the A1Π − X1Σ (1, 0) electronic band system of SiO at 231 nm. Corrections for temperature-dependent population of the related ground state are based on multi-line SiO–LIF thermometry utilizing transitions within the A1Π − X1Σ (0, 0) electronic band around 234 nm. Corrections for local collisional quenching are based on measured effective fluorescence lifetimes from the temporal signal decay using a short camera gate stepped with respect to the laser pulse. This fluorescence lifetime measurement was confirmed with additional measurements using a fast photomultiplier. The resulting semi-quantitative LIF signal was photometrically calibrated using Rayleigh scattering from known gas samples at various pressures and laser energies as well as with nitric oxide LIF. The obtained absolute SiO concentration values in the HMDSO-doped flames will serve as a stringent test case for recently developed flame kinetic mechanisms for this class of gas-borne silicon dioxide nanoparticle synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.E. Pratsinis, Flame aerosol synthesis of ceramic powders. Progr. Energy Combust. Sci. 24(3), 197–219 (1998)

    Article  Google Scholar 

  2. P. Roth, Particle synthesis in flames. Proc. Combust. Inst. 31(2), 1773–1788 (2007)

    Article  Google Scholar 

  3. S. Li et al., Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics. Progr. Energ. Combust. Sci. 55, 1–59 (2016)

    Article  Google Scholar 

  4. C. Schulz et al., Gas-phase synthesis of functional nanomaterials: challenges to kinetics, diagnostics, and process development. Proc. Combust. Inst. 37, 83–108 (2019)

    Article  Google Scholar 

  5. N.G. Glumac, Formation and consumption of SiO in powder synthesis flames. Combust. Flame 124, 702–711 (2001)

    Article  Google Scholar 

  6. H. Janbazi et al., Response surface and group-additivity methodology for estimation of thermodynamic properties of organosilanes. Int. J. Chem. Kin. 50(9), 681–690 (2018)

    Article  Google Scholar 

  7. M.R. Zachariah, D.R.F. Burges, Strategies for laser excited fluorescence spectroscopy. Measurements of gas phase species during particle formation. J. Aerosol Sci. 25(3), 487–497 (1994)

    Article  ADS  Google Scholar 

  8. Feroughi, O.M., et al., Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis. Proc. Combust. Inst. 36, 1045–1053 (2017)

    Article  Google Scholar 

  9. R.S.M. Chrystie et al., Comparative study of flame-based SiO2 nanoparticle synthesis from TMS and HMDSO: SiO–LIF concentration measurement and detailed simulation. Proc. Combust. Inst. 37(1), 1221–1229 (2019)

    Article  Google Scholar 

  10. T. Dreier, C. Schulz, Laser-based diagnostics in the gas-phase synthesis of inorganic nanoparticles. Powder Technol. 287, 226–238 (2016)

    Article  Google Scholar 

  11. P. van de Weijer, B.H. Zwerver, Laser-induced fluorescence of OH and SiO molecules during thermal chemical vapour deposition of SiO2 from silane-oxygen mixtures. Chem. Phys. Lett. 163(1), 48–54 (1989)

    Article  ADS  Google Scholar 

  12. A.J. Hynes, Laser-induced fluorescence of silicon monoxide in a glow discharge and an atmospheric pressure flame. Chem. Phys. Lett. 181(2–3), 237–244 (1991)

    Article  ADS  Google Scholar 

  13. R. Yamashiro, Y. Matsumoto, K. Honma, Reaction dynamics of Si(PJ3) + O2→ SiO(XΣ + 1) + O studied by a crossed-beam laser-induced fluorescence technique. J. Chem. Phys. 128(8), 084308 (2008)

    Article  ADS  Google Scholar 

  14. D. Goodwin, D. Capewell, P. Paul, Planar laser-induced fluorescence diagnostics of pulsed laser ablation of silicon, in MRS Online Proceedings Library Archive (1995), p. 388

  15. R. Walkup, S. Raider, In situ measurements of SiO(g) production during dry oxidation of crystalline silicon. Appl. Phys. Lett. 53(10), 888–890 (1988)

    Article  ADS  Google Scholar 

  16. O. Motret, F. Coursimault, J. Pouvesle, Absolute silicon monoxide density measurement by self-absorbed spectroscopy in a non-thermal atmospheric plasma. J. Phys. D Appl. Phys. 37(13), 1750 (2004)

    Article  ADS  Google Scholar 

  17. R.S.M. Chrystie et al., SiO multi-line laser-induced fluorescence for quantitative temperature imaging in flame-synthesis of nanoparticles. Appl. Phys. B Lasers Opt. 123(4), 104 (2017)

    Article  ADS  Google Scholar 

  18. J.R. Reisel et al., Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure. Combust. Sci. Technol. 91(4–6), 271–295 (1993)

    Article  Google Scholar 

  19. P. Desgroux, M. Cottereau, Local OH concentration measurement in atmospheric pressure flames by a laser-saturated fluorescence method: two-optical path laser-induced fluorescence. Appl. Opt. 30(1), 90–97 (1991)

    Article  ADS  Google Scholar 

  20. A. Koch et al., Planar imaging of a laboratory flame and of internal combustion in an automobile engine using UV Rayleigh and fluorescence light. Appl. Phys. B 56(3), 177–184 (1993)

    Article  ADS  Google Scholar 

  21. E. Rothe et al., Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced predissociative fluorescence. Appl. Phys. B Lasers Opt. 66(2), 251–258 (1998)

    Article  ADS  Google Scholar 

  22. E.W. Rothe et al., Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced predissociative fluorescence. Appl. Phys. B 66, 251–258 (1998)

    Article  ADS  Google Scholar 

  23. E.W. Rothe, P. Andresen, Application of tunable excimer lasers to combustion diagnostics: a review. Appl. Opt. 36(18), 3971–4033 (1997)

    Article  ADS  Google Scholar 

  24. C. Schulz, V. Sick, Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems. Prog. Energy Combust. Sci. 31, 75–121 (2005)

    Article  Google Scholar 

  25. W.G. Bessler et al., Quantitative NO–LIF imaging in high-pressure flames. Appl. Phys. B: Lasers Opt. 75(1), 97–102 (2002)

    Article  ADS  Google Scholar 

  26. C. Hecht et al., Imaging measurements of atomic iron concentration with laser-induced fluorescence in a nano-particle synthesis flame reactor. Appl. Phys. B 94, 119–125 (2009)

    Article  ADS  Google Scholar 

  27. M. Versluis et al., 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. Appl. Phys. B Lasers Opt. 65(3), 411–417 (1997)

    Article  ADS  Google Scholar 

  28. C. Brackmann et al., Structure of premixed ammonia + air flames at atmospheric pressure: laser diagnostics and kinetic modeling. Combust. Flame 163, 370–381 (2016)

    Article  Google Scholar 

  29. J. Luque et al., Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame. Appl. Phys. B 73(7), 731–738 (2001)

    Article  ADS  Google Scholar 

  30. S.V. Naik, N.M. Laurendeau, Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure. Appl. Opt. 43(26), 5116–5125 (2004)

    Article  ADS  Google Scholar 

  31. J.D. Koch et al., Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone. Appl. Opt. 43(31), 5901–5910 (2004)

    Article  ADS  Google Scholar 

  32. C. Kaminski, P. Ewart, Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence. Appl. Phys. B 61(6), 585–592 (1995)

    Article  ADS  Google Scholar 

  33. J. Luque, D. Crosley, Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence. Appl. Phys. B 63(1), 91–98 (1996)

    Article  ADS  Google Scholar 

  34. J. Luque et al., Quantitative laser-induced fluorescence of CH in atmospheric pressure flames. Appl. Phys. B 75(6–7), 779–790 (2002)

    ADS  Google Scholar 

  35. W. Juchmann et al. Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames, in Symposium (International) on Combustion (Elsevier, 1998)

  36. W.G. Bessler et al., Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames: III. Comparison of A−X strategies. Appl. Opt. 42(24), 4922–4936 (2003)

    Article  ADS  Google Scholar 

  37. W.G. Bessler et al., Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A−X (0, 0) excitation. Appl. Opt. 41(18), 3547–3557 (2002)

    Article  ADS  Google Scholar 

  38. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2 edn. (Gordon and Breach, Amsterdam, 1996)

    Google Scholar 

  39. S.V. Naik, N.M. Laurendeau, Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure. Appl. Opt. 43, 5116–5125 (2004)

    Article  ADS  Google Scholar 

  40. M. Born, E. Wolf, Principles of Optics (Pergamon. New York, 1980) pp. 393–401

    Google Scholar 

  41. I.S. McDermid, J.B. Laudenslager, Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, v′ = 0). J. Quant. Spectrosc. Radiat. Transf. 27, 483–492 (1982)

    Article  ADS  Google Scholar 

  42. C. Amiot, R. Bacis, G. Guelachvili, Infrared study of the X2Π v = 0, 1, 2 levels of 14N16O. Preliminary results on the v = 0, 1 levels of 14N17O, 14N18O, and 15N16O. Can. J. Phys. 56, 251–265 (1978)

    Article  ADS  Google Scholar 

  43. M. Geier, C.B. Dreyer, T.E. Parker, Laser-induced emission spectrum from high-temperature silica-generating flames. J. Quant. Spectr. Radiat. Transf. 109, 822–830 (2008)

    Article  ADS  Google Scholar 

  44. P. Andresen et al., Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame. Appl. Opt. 27(2), 365–378 (1988)

    Article  ADS  Google Scholar 

  45. H.S. Liszt, W.M.H. Smith, RKR Franck–Condon factors for blue and ultraviolet transitions of some molecules of astrophysical interest and some comments on the interstellar abundance of CH, CH+ and SiH+. J. Quant. Spectrosc. Radiat. Trans. 12, 947–958 (1972)

    Article  ADS  Google Scholar 

  46. W.H. Smith, H. Liszt, Radiative lifetimes and absolute oscillator strengths for the SiO A1Π-X1Σ + transition. J. Quant. Spectrosc. Radiat. Transf. 12(4), 505–509 (1972)

    Article  ADS  Google Scholar 

  47. J. Oddershede, N. Elander, Spectroscopic constants and radiative lifetimes for valence-excited bound states in SiO. J. Chem. Phys. 65(9), 3495–3505 (1976)

    Article  ADS  Google Scholar 

  48. S.R. Langhoff, J.O. Arnold, Theoretical study of the X1Σ+, A1Π, C1Σ− and E1Σ + states for the SiO molecule. J. Chem. Phys. 70(2), 852–863 (1979)

    Article  ADS  Google Scholar 

  49. S. Chattopadhyaya, A. Chattopadhyay, K.K. Das, Configuration interaction study of the low-lying electronic states of silicon monoxide. J. Phys. Chem. A 107(1), 148–158 (2003)

    Article  Google Scholar 

  50. I. Drira et al., Theoretical study of the A1Π− X1Σ+ and E1Σ+ − X1Σ+ bands of SiO. J. Quant. Spectrosc. Radiat. Transf. 60(1), 1–8 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial support of this project by the Deutsche Forschungsgemeinschaft (DFG) within FOR 2284 (contract DR 195/17-2) is gratefully acknowledged. The authors also thank Torsten Endres, Siavash Zabeti and Usama Murtaza for fruitful discussions and supporting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dreier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrystie, R.S.M., Ebertz, F.L., Dreier, T. et al. Absolute SiO concentration imaging in low-pressure nanoparticle-synthesis flames via laser-induced fluorescence. Appl. Phys. B 125, 29 (2019). https://doi.org/10.1007/s00340-019-7137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7137-8

Navigation