Applied Physics B

, 125:19 | Cite as

Measurement of the spatial magnetic field distribution in a single large spin-exchange relaxation-free vapor cell

  • Alexander GusarovEmail author
  • Andrei Ben-Amar Baranga
  • David Levron
  • Reuben Shuker


This article presents a method to determine the magnetic field distribution within the vapor cell of a spin-exchange relaxation-free (SERF) atomic magnetometer with a sensitivity of the order of 10 femtoTesla and a bandwidth of DC to 100 Hz, in the presence of an uncompensated ambient magnetic field of up to several nanoTesla. The method is based on the analysis of the atomic polarization in a multichannel pump–probe configuration, in which a spatially selective optical pumping enables to probe specific layers of the atomic vapor contained in a gas-buffered cell. An SERF magnetometer is inherently sensitive to one component of the magnetic field, orthogonal to the pump and probe laser beams. The sensor’s performance can be drastically degraded by the other uncompensated components of the magnetic field. Typically, SERF magnetometry requires very good magnetic shielding and active compensation of residual magnetic field to properly function; this is commonly achieved by applying a complex design of Helmholtz coils in a sophisticated compensation procedure. The method suggested in this article eliminates the influence of non-uniform residual magnetic fields on the accuracy of measurements without precise compensation of the interfering field components. This procedure is used to simplify the measurements of magnetic field distribution in a large vapor cell with required accuracy. This is critically important for precise multichannel magnetic field mapping used for localization of the magnetic dipole-field source.



The authors would like to thank Alexander Papkov from The Dead-Sea and Arava Science Center for the valuable practical discussions in the early stages of this research.


  1. 1.
    J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801–130802 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J.-H. Liu, D.-Y. Jing, L.-L. Wang, Y. Li, W. Quan, J.-C. Fang, W.-M. Liu, The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers. Nat. Sci. Rep. 7:6776 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    J. Lu, Z. Qian, J. Fang, W. Quan, Effects of AC magnetic field on spin-exchange relaxation of atomic magnetometer. Appl. Phys. B 122, 59 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    A. Grosz, M.C. Haji-Sheikh, S.C. Mukhopadayay, High Sensitivity Magnetometers (Springer, New York, 2016), pp. 451–491Google Scholar
  5. 5.
    K. Wendel, O. Väisänen, J. Malmivuo, N.G. Gencer, B. Vanrumste, P. Durka, R. Magjarević, S. Supek, M.L. Pascu, H. Fontenelle, R.G. de Peralta Menendez, EEG/MEG source imaging: methods, challenges, and open issues. Comput. Intell. Neurosci. 2009, 656092 (2009)CrossRefGoogle Scholar
  6. 6.
    T. Hedrich, G. Pellegrino, E. Kobayashi, M. Lina, C. Grova, Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 157:531–544 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Horsley, G.-X. Du, P. Treutlein, Widefield microwave imaging in alkali vapor cells with sub-100 µm resolution. N. J. Phys. 17, 112002 (2015)CrossRefGoogle Scholar
  8. 8.
    Y.J. Kim, I. Savukov, J.-H. Huang, P. Nath, Magnetic microscopic imaging with an optically pumped magnetometer and flux guides. Appl. Phys. Lett. 110, 043702 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    K. Nishi, Y. Ito, T. Kobayashi, High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer. Opt. Express 26(2), 1988–1996 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gusarov, A. Ben-Amar Baranga, D. Levron, R. Shuker, Accuracy enhancement of magnetic field distribution measurements within a large cell spin-exchange relaxation-free magnetometer. IOP Measure. Sci. Technol. 29, 045209 (2018)Google Scholar
  11. 11.
    Y.J. Kim, I. Savukov, Ultra-sensitive magnetic microscopy with an optically pumped magnetometer. Sci. Rep. 6, 24773 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ito, D. Sato, K. Kamada, T. Kobayashi, Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer. IEEE Trans. Magn. 50, 4006903 (2014)Google Scholar
  13. 13.
    A. Gusarov, D. Levron, E. Paperno, R. Shuker, A. Ben-Amar Baranga, Three-dimensional magnetic field measurements in a single SERF atomic-magnetometer cell. IEEE Trans. Magn. 45, 4478 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    V. Dolgovskiy, I. Fescenko, N. Sekiguchi, S. Colombo, V. Lebedev, J. Zhang, A. Weis, A magnetic source imaging camera. Appl. Phys. Lett. 109, 023505 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    T. Wang et al., Application of spin-exchange relaxation-free magnetometry to the cosmic axion spin precession experiment. Phys. Dark Univ. 19, 27–35 (2018)CrossRefGoogle Scholar
  16. 16.
    H. Xia, A. Ben-Amar Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89(21), 211104 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Breschi, Z. Grujić, A. Weis, In situ calibration of magnetic field coils using free-induction decay of atomic alignment. Appl. Phys. B 115(1), 85–91 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    D. Budker, D.F. Jackson Kimball, Optical Magnetometry (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar
  19. 19.
    F. Bloch, Nuclear induction. Phys. Rev. 70, 460 (1946)ADSCrossRefGoogle Scholar
  20. 20.
    S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A58, 1412 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 77, 033408 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    I. Savukov, Ultra-Sensitive Optical Atomic Magnetometers and Their Applications (INTECH Open Access Publisher, London, 2010)CrossRefGoogle Scholar
  23. 23.
    I.M. Savukov, S.J. Seltzer, M.V. Romalis, K.L. Sauer, Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    V. Schultze, R. IJsselsteijn, H.-G. Meyer, Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 100(4), 717–724 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Seltzer. Developments in Alkali-Metal Atomic Magnetometry, Dissertation, Princeton University, 2008Google Scholar
  26. 26.
    S.J. Seltzer, M.V. Romalis, High-temperature alkali vapor cells with antirelaxation surface coatings. J. Appl. Phys. 106, 114905 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    E. Paperno, A. Plotkin, Cylindrical induction coil to accurately imitate the ideal magnetic dipole. Sens. Actuat. A 112, 248–252 (2004)CrossRefGoogle Scholar
  28. 28.
    A. Gusarov, D. Levron, A. Ben-Amar Baranga, E. Paperno, R. Shuker, An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation. J. Appl. Phys. 109, 07E507 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Dead-Sea and Arava Science CenterTamar Regional CouncilIsrael
  2. 2.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations