Applied Physics B

, 125:16 | Cite as

Quantitative measurement of volume fraction profiles of soot of different maturities in premixed flames by extinction-calibrated laser-induced incandescence

  • Christopher Betrancourt
  • Xavier Mercier
  • Fengshan Liu
  • Pascale Desgroux
Part of the following topical collections:
  1. Laser-Induced Incandescence


The laser-induced incandescence (LII) and cavity ring-down extinction (CRDE) optical techniques offer excellent sensitivity to allow in situ soot volume fraction \(({f_{\text{v}}})\) measurements over a wide dynamic range. The objective of this work is to quantitatively measure the axial \({f_{\text{v}}}\) profiles in two n-butane premixed flames with very different stages of soot maturity and very different levels of \({f_{\text{v}}}\). The first flame is a nucleation flame in which soot particles undergo only minor growth and have diameters between 2 and 4 nm. The second is a normal sooting flame generating soot from inception to mature stage. Experiments were performed by combining LII and CRDE using a laser at 1064 nm. Quantitative measurements of \({f_{\text{v}}}\) require the knowledge of the dependence of soot absorption function \(E(m)~\) on wavelength and soot maturity. To this aim, two novel approaches were developed to evaluate the variation of \(E(m)~\) at 1064 nm along the flame centerline and between 532 and 1064 nm covering the entire spectral range used in this study. The axial LII profiles were converted to absolute \({f_v}\) by CRDE measurements. The performance of the combined techniques is demonstrated in the two investigated flames for \({f_{\text{v}}}\) in the range of 0.013–9.7 ppb.



Région “Hauts de France”, Ministère de l’Enseignement Supérieur et de la Recherche (CPER Climibio), European Fund for Regional Economic Development and ANR-13-TDMO-0002 ASMAPE are thanked for their financial support. CaPPA project is funded by the French National Research Agency (Programme Investissement d’Avenir, contract ANR-11-LABX-0005).


  1. 1.
    H. Wang, Proc. Combust. Inst. 33, 41 (2011)CrossRefGoogle Scholar
  2. 2.
    A. D’Anna, Proc. Combust. Inst. 32, 593 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Aubagnac-Karkar, A. El Bakali, P. Desgroux, Combust. Flame 189, 190 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Gu, H. Lin, J. Camacho, B. Lin, C. Shao, R. Li, H. Gu, B. Guan, Z. Huang, H. Wang, Combust. Flame 165, 177 (2016)CrossRefGoogle Scholar
  5. 5.
    A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, H. Wang, Combust. Flame 154, 775 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Commodo, G. De Falco, A. Bruno, C. Borriello, P. Minutolo, A. D’Anna, Combust. Flame 162, 3854 (2015)CrossRefGoogle Scholar
  7. 7.
    M.M. Maricq, S.J. Harris, J.J. Szente, Combust. Flame 132, 328 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Chowdhury, W.R. Boyette, W.L. Roberts, J. Aerosol Sci. 106, 56 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J. Simonsson, N.-E. Olofsson, S. Török, P.-E. Bengtsson, H. Bladh, Appl. Phys. B 119, 657 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Tian, Y. Gao, S. Balusamy, S. Hochgreb, Appl. Phys. B 120, 469 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, F. Liu, Appl. Phys. B 118, 449 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B 104, 357 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 273 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    T. C. Williams, C. R. Shaddix, K. A. Jensen, J. M. Suo-Anttila, Int. J. Heat Mass Transf. 50, 1616 (2007)CrossRefGoogle Scholar
  16. 16.
    N. Moteki, Y. Kondo, J. Aerosol Sci. 39, 348 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2 (2015)CrossRefGoogle Scholar
  18. 18.
    N.-E. Olofsson, J. Simonsson, S. Török, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 119, 669 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, Appl. Phys. B 112, 287 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P. Minutolo, G. Gambi, and A. D’Alessio, Symp. (Int.) Combust. 26, 951 (1996)CrossRefGoogle Scholar
  23. 23.
    J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 253 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K.O. Johansson, F.E. Gabaly, P.E. Schrader, M.F. Campbell, H.A. Michelsen, Aerosol Sci. Technol. 51, 1333 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C. Betrancourt, F. Liu, P. Desgroux, X. Mercier, A. Faccinetto, M. Salamanca, L. Ruwe, K. Kohse-Höinghaus, D. Emmrich, A. Beyer, A. Gölzhäuser, and T. Tritscher, Aerosol Sci. Technol. 51, 1 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Desgroux, A. Faccinetto, X. Mercier, T. Mouton, D. Aubagnac Karkar, A. El Bakali, Combust. Flame 184, 153 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Mouton, X. Mercier, M. Wartel, N. Lamoureux, P. Desgroux, Appl. Phys. B 112, 369 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    H. Bladh, N.-E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P.-E. Bengtsson, P. Desgroux, Proc. Combust. Inst. 35, 1843 (2015)CrossRefGoogle Scholar
  30. 30.
    A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, in Combustion Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2007), p. 206Google Scholar
  31. 31.
    L. A. Sgro, A. C. Barone, M. Commodo, A. D’Alessio, A. De Filippo, G. Lanzuolo, P. Minutolo, Proc. Combust. Inst. 32, 689 (2009)CrossRefGoogle Scholar
  32. 32.
    M.R. Kholghy, G.A. Kelesidis, S.E. Pratsinis, Phys. Chem. Chem. Phys. 20, 10926 (2018)CrossRefGoogle Scholar
  33. 33.
    E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 116, 313 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    J. Yon, E. Therssen, F. Liu, S. Bejaoui, D. Hebert, Appl. Phys. B 119, 643 (2015)CrossRefGoogle Scholar
  36. 36.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 50, 740 (2012)CrossRefGoogle Scholar
  37. 37.
    R.P. Bambha, M.A. Dansson, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 112, 343 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa, J.F. Pauwels, P. Desgroux, Proc. Combust. Inst. 31, 841 (2007)CrossRefGoogle Scholar
  39. 39.
    P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008)CrossRefGoogle Scholar
  40. 40.
    N.-E. Olofsson, H. Bladh, A. Bohlin, J. Johnsson, P.-E. Bengtsson, Combust. Sci. Technol. 185, 293 (2013)CrossRefGoogle Scholar
  41. 41.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Combust. Flame 153, 384 (2008)CrossRefGoogle Scholar
  42. 42.
    X. Mercier, P. Desgroux, in Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, Hoboken, 2009), pp. 273–311CrossRefGoogle Scholar
  43. 43.
    R.L. Vander Wal, T.M. Ticich, Appl. Opt., 38, 1444 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    F. Liu, G.J. Smallwood, Appl. Phys. B 112, 307 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    E. Cenker, W.L. Roberts, Appl. Phys. B 123, 74 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    F. Goulay, L. Nemes, P.E. Schrader, H.A. Michelsen, Mol. Phys. 108, 1013 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)CrossRefGoogle Scholar
  50. 50.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)CrossRefGoogle Scholar
  51. 51.
    J. Yon, A. Bescond, F.-X. Ouf, J. Aerosol Sci. 87, 28 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    J. Reimann, S.-A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 297 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l’AtmosphèreLilleFrance
  2. 2.Measurement Science and StandardsNational Research CouncilOttawaCanada
  3. 3.Laboratoire EM2C - CNRS CentraleSupelec91192 Gif-sur-Yvette cedexFrance

Personalised recommendations