Applied Physics B

, 125:14 | Cite as

Single-mode scannable nanosecond Ti:sapphire laser for high-resolution two-photon absorption laser-induced fluorescence (TALIF)

  • P. Lottigier
  • A. Jucha
  • L. Cabaret
  • C. Blondel
  • C. Drag


A pulsed Ti:sapphire laser has been developed so as to operate over a wide range of frequencies, even far from the optimum wavelength (790 nm), as a narrow-band light source for TALIF experiments on O, Cl, N and H. The coupling of the optical cavity, both to its injection seeder and to the laser output beam, relies on a reflecting plate, which makes it fundamentally easier to control the coupling coefficient over a wider spectral range than with an ordinary transmission coupler. Two intra-cavity prisms are used to bring the green pumping light longitudinally coincident with the cavity axis, inside the Ti:sapphire crystal. Seeding by a CW Ti:sapphire laser has made it possible to obtain single-mode emission over the whole range of tunability, thanks to the spectral selection of the prisms and to a specifically developed digital/analog controller. Experiments carried out with the system on oxygen atoms inside an oxygen plasma show that the experimental bandwidth is limited essentially by the collisional dephasing rate and the finite pulse duration.



This work has been supported by ’Laboratoire d’Excellence Physics Atom Light Matter’—LabEx PALM (SIP) part of ANR Investissements d’Avenir (ANR-10-LABX-0039-PALM). The authors would like to thank J.-P. Booth, A. Chatterjee, O. Guaitella and A.-S. Morillo-Candas (Laboratoire de Physique des Plasmas) for plasma operation and T. L. Chng (Laboratoire de Physique des Plasmas) for constructive criticism of the manuscript.


  1. 1.
    P.F. Moulton, J. Opt. Soc. Am. B 3, 125–133 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    S. Hannemann, E.-J. van Duijn, W. Ubachs, Rev. Sci. Inst. 78, 103102 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    P. Brockman, C.H. Bair, J.C. Barnes, R.V. Hess, E.V. Browell, Opt. Lett. 11, 712–714 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    G.A. Rines, P.F. Moulton, Opt. Lett. 15, 434–436 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    T.D. Raymond, Smith, Opt. Lett. 16, 33–35 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ertel, H. Linné, J. Bösenberg, Appl. Opt. 44, 5120–5126 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    L. Cabaret, C. Drag, Eur. Phys. J. Appl. Phys. 51, 20702 (2010)CrossRefGoogle Scholar
  8. 8.
    T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wallace, Opt. Lett. 16, 399–401 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    D.V. Guerra, D.B. Coyle, D.J. Krebs, Measure. Sci. Technol. 5, 1306–1308 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Barnes, N.P. Barnes, L.G. Wang, W. Edwards, IEEE J. Quant. Elec. 29, 2684–2692 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Elsayed, R.J. DeYoung, L.B. Petway, W.C. Edwards, J.C. Barnes, H.E. Elsayed-Ali, Appl. Opt. 42, 6650–6660 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, M. Schiller, Appl. Opt. 52, 2454–2469 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hannemann, E.J. Salumbides, S. Witte, R.T. Zinkstok, E.-J. van Duijn, K.S.E. Eikema, W. Ubachs, Phys. Rev. A 74, 062514 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    C.F. Cheng et al., Phys. Rev. Lett. 121, 013001 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    M. Hori, A. Dax, Opt. Lett. 34, 1273–1275 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    V. Sonnenschein, I.D. Moore, S. Raeder, M. Reponen, H. Tomita, K. Wendt, Laser Phys. 27, 085701 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    G. Gabrielse et al., Opt. Lett. 43, 2905–2907 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, Chem. Phys. Lett. 143, 571–576 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    U. Czarnetzki, K. Miyazaki, T. Kajiwara, K. Muraoka, M. Maeda, H.F. Döbele, J. Opt. Soc. Am. B 11, 2155–2162 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Bamford, L.E. Jusinski, W.K. Bischel, Phys. Rev. A 34, 185–198 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    W.K. Bischel, B.E. Perry, D.R. Crosley, Appl. Opt. 21, 1419–1429 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    S. Mazouffre, C. Foissac, P. Supiot, P. Vankan, R. Engeln, D.C. Schram, N. Sadeghi, Plasma Sources Sci. Technol. 10, 168–175 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    M. Heaven, T.A. Miller, R.R. Freeman, J.C. White, J. Bokor, Chem. Phys. Lett 86, 458–462 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    A. Goehlich, T. Kawetzki, H.F. Döbele, J. Chem. Phys. 108, 9362–9370 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    K. Niemi, V. Schulz-von der Gathen, H.F. Döbele, J. Phys. D Appl. Phys. 34, 2330–2335 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    K. Niemi, V. Schulz-Von Der Gathen, H.F. Döbele, Plasma Sources Sci. Technol. 14, 375–386 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    I.T. Mc Kinnie, A.L.L. Oien, D.M. Warrington, P.N. Tonga, L.A.W. Gloster, T.A. King, IEEE J. Quant. Elec 33, 1221–1230 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    F. Salin, J. Squier, Opt. Lett. 17, 1352–1354 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    G. Wagner, V. Wulfmeyer, A. Behrendt, Appl. Opt. 50, 5921–5937 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    J. Yao, Y. Wang, Nonlinear Optics and Solid-State Lasers (Springer-Verlag, Berlin Heidelberg, 2012)CrossRefGoogle Scholar
  31. 31.
    J.M. Eggleston, L.G. DeHazer, K.W. Kangas, IEEE J. Quant. Elec. 21, 1582–1595 (1985)CrossRefGoogle Scholar
  32. 32.
    A. Ogino, M. Katsuragawa, K. Hakuta, Jpn. J. Appl. Phys. 36, 5112–5115 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    A. Kasapi, G.Y. Yin, M. Jain, Appl. Opt. 35, 1999–2004 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    M.S. Bowers, S.E. Moody, J. Opt. Soc. Am. B 11, 2266–2275 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    P.F. Moulton, IEEE J. Quant. Elec. 21, 1582–1595 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    W. Koechner, Solid-State Laser Engineering (Springer, New York, 2013)zbMATHGoogle Scholar
  37. 37.
    J.J. Degnan, IEEE J. Quant. Elec. 25, 214–220 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Fee, K. Danzmann, S. Chu, Phys. Rev. A 45, 4911–4922 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    J.-P. Booth, D. Marinov, M. Foucher, O. Guaitella, D. Bresteau, L. Cabaret, C. Drag, J. Instrum. 10, C11003 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Marinov, C. Drag, C. Blondel, O. Guaitella, J. Golda, B. Klarenaar, R. Engeln, V. von der Schulz- Gathen, J.-P. Booth, Plasma Sources Sci. Technol. 25, 06LT03 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Marinov, J.-P. Booth, C. Drag, C. Blondel, J. Phys. B: At. Mol. Opt. Phys. 50, 065003 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    T.B. Settersten, M.A. Linne, J. Opt. Soc. Am. B 19, 954–964 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    F. Biraben, B. Cagnac, G. Grynberg, Phys. Rev. Lett. 32, 643–645 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    F. Biraben, M. Bassini, B. Cagnac, J. Phys. Paris 40, 445–455 (1979)CrossRefGoogle Scholar
  45. 45.
    M. Hemmer, Y. Joly, L. Globov, M. Bass, M. Richardson, Opt. Express 17, 8212–8219 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    N. Sirse, J.-P. Booth, P. Chabert, A. Surzhykov, P. Indelicato, J. Phys. D: Appl. Phys. 46, 295203 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Lottigier
    • 1
  • A. Jucha
    • 2
  • L. Cabaret
    • 3
  • C. Blondel
    • 1
  • C. Drag
    • 1
  1. 1.Laboratoire de Physique des Plasmas (UMR 7648), CNRSSorbonne Université, Univ Paris-sud, Ecole polytechniquePalaiseauFrance
  2. 2.Laboratoire-Aimé Cotton, CNRS, Univ Paris-sud, ENS Paris SaclayUniversité Paris-SaclayOrsay CedexFrance
  3. 3.BERILIA Laser, La Légeardière, ChemilléChemillé-en-AnjouFrance

Personalised recommendations