Applied Physics B

, 125:11 | Cite as

Estimating the teleported initial parameters of a single- and two-qubit systems

  • K. El Anouz
  • A. El Allati
  • N. Metwally
  • T. Mourabit


A single atomic field state is used as a quantum channel to teleport a state of two-qubit system. The possibility of estimating the teleported initial state parameters is discussed by means of quantum Fisher information. It is shown that by controlling the initial atomic field parameters, one may freeze the quantum Fisher information of the teleported parameters. Meanwhile, the teleported state keeps its local information. The sizes of the frozen areas depend on the initial state settings and the atomic field parameters. We show that the estimation degree of teleporting a single qubit is larger than that depicted for two-qubit system. Moreover, the estimation degree increases in the resonance case. It is shown that the maximum bounds of the quantum Fisher information are reached periodically. The phenomena of the sudden changes of quantum Fisher information are displayed at larger values of detuning parameters and the number of photons inside the cavity.



A.E.A. acknowledges the hospitality of the Abdus Salam International Center for Theoretical Physics (Trieste, Italy).


  1. 1.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Gottesman, I. Chuang, Quantum teleportation is a universal computational primitive. Nature (London) 402, 390 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    R. Ursin, Communications: quantum teleportation across the Danube. Nature (London) 430, 849 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A. El Allati, Y. Hassouni, N. Metwally, Communication via an entangled coherent quantum network. Phys. Scr. 83, 065002 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Braunstein, H.J. Kimble, Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    H. Takesue et al., Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832 (2015)CrossRefGoogle Scholar
  7. 7.
    A. El Allati, N. Metwally, Y. Hassouni, Transfer information remotely via noise entangled coherentchannels. Opt. Commun. 284, 519 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)zbMATHGoogle Scholar
  9. 9.
    X.M. Lu, Z. Sun, X. Wang, S. Luo, C.H. Oh, Broadcasting quantum Fisher information. Phys. Rev. A 87, 050302(R) (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)zbMATHGoogle Scholar
  11. 11.
    W.K. Wootters, Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  13. 13.
    V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photon. 5, 222 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S.L. Braunstein, C.M. Caves, Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Ma, Y.-X. Huang, X. Wang, C.P. Sun, Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Zheng, Y. Uao, Y. Li, Optimal quantum channel estimation of two interacting qubit subject to decoherence. Eur. Phys. J. D 68, 170 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    F. Ozaydin, Quantum Fisher information of W States in Decoheren ce channels. Phys. Lett. A 378, 3161 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    W.G. You, G.Y. Neng, Z. Ke, Dynamics of quantum Fisher information in a two-level sysyem coupled to mutipled Bosonic reservoirs. Chin. Phys. B. 24, 114201 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Altinats, Ann. Phys. 376, 192 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    N. Metwally, Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 045202 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    N. Metwally, S.S. Hassan, Estimation of pulsed driven qubit parameters via quantum Fisher information. Laser Phys. Lett. 14, 115204 (2017). (8pp)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Dowling, K.P. Seshadreesan, Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol. 33, 2359 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    N. Metwally, Fisher information of accelerated two-qubit systems. Int. J. Mod. Phys. B 32(5), 1850050 (2018)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    B.R. Frieden, R.A. Gatenby, Exploratory Data Analysis Using Fisher Information (Springer, Arizona, 2007)CrossRefGoogle Scholar
  26. 26.
    F. Troiani, On the use of classical and quantum Fisher information in molecular magnetism. Magnetochemistry 2, 33 (2016)CrossRefGoogle Scholar
  27. 27.
    N. Metwally, M. Abdelaty, Obada, Quantum teleportation via entangled states generated by the Jaynes–Cummings model. A.-S.F. Chaos Solitons Fractals. 22, 529535 (2004)zbMATHGoogle Scholar
  28. 28.
    L. Chotorlishvili, Z. Toklikishvili, Chaotic dynamics of coupled two-level atoms in the optical cavity. Eur. Phys. J. D. 47, 433 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A. 81, 042105 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Cola, M.G.A. Paris, Teleportation of bipartite states using a single entangled pair. Phys. Lett. A 337, 10–16 (2005)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G.-F. Zhang, Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J. Liu, X. Jing, X. Wang, Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    X. Xiao, Y. Yao, W.J. Zhong, Y.L. Li, Y.M. Xie, Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • K. El Anouz
    • 1
  • A. El Allati
    • 1
    • 2
  • N. Metwally
    • 3
    • 4
  • T. Mourabit
    • 1
  1. 1.Laboratory of R&D in Engineering Sciences, Faculty of Sciences and Techniques Al-HoceimaAbdelmalek Essaadi UniversityTétouanMorocco
  2. 2.The Abdus Salam International Center for Theoretical PhysicsMiramare-TriesteItaly
  3. 3.Mathematics Department, College of ScienceUniversity of BahrainBahrainKingdom of Bahrain
  4. 4.Mathematics Department, Faculty of ScienceAswan UniversityAswanEgypt

Personalised recommendations