Advertisement

Applied Physics B

, 125:9 | Cite as

Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes

  • Wei Wei
  • Wen Yu Peng
  • Yu Wang
  • Rishav Choudhary
  • Shengkai Wang
  • Jiankun ShaoEmail author
  • Ronald K. Hanson
Article
  • 163 Downloads

Abstract

We experimentally demonstrate the non-absorbing interference rejection capabilities of wavelength modulation spectroscopy (WMS) speciation in shock tube experiments by directly comparing WMS measurements against direct-absorption spectroscopy (DA) measurements. The improved capability is demonstrated by probing the P(20) transition of the CO fundamental band using a quantum cascade laser in shock-heated mixtures of CO and N\(_2\) across a wide range of pressures between 3.5 and 18 atm. In the WMS measurements, the second harmonic (2f) served as the detection signal, while the first harmonic (1f) provided normalization to counteract intensity drift and fluctuations. These perturbations occur in shock tubes because of significant beam-steering noise and imperfect optical alignment when experiments are conducted at elevated pressures. The WMS detection system was evaluated at reflected shock pressures of 3.5 atm, 8.5 atm, and 18 atm, demonstrating improvement in signal-to-noise ratio over concurrent DA measurements. To the authors’ knowledge, this work represents the first direct experimental quantification of the intensity-fluctuation rejection capabilities of a WMS-based TDLAS sensor at high pressures.

Notes

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) with Dr. Chiping Li as technical monitor, through Grant FA9550-16-1-0195. The authors thank Dr. David F. Davidson (Stanford University, Stanford, US) for helpful discussions.

References

  1. 1.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO\(_2\) concentration and temperature at high pressures using \(1f\)-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 \(\mu\)m. App. Opt. 48(35), 6740–6753 (2009)ADSGoogle Scholar
  2. 2.
    J. Shao, C. Rishav, D.F. Davidson, R.K. Hanson, S. Barak, S. Vasu, Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm. Proc. Combust. Inst. (2018).  https://doi.org/10.1016/j.proci.2018.08.002 CrossRefGoogle Scholar
  3. 3.
    D. F. Davidson, J. Shao, R. Choudhary, M. Mehl, N. Obrecht, R. K. Hanson, Ignition delay time measurements and modeling for gasoline at very high pressures. Proceedings of the Combustion Institute (2018)Google Scholar
  4. 4.
    D.E. Burch, D.A. Gryvnak, R.R. Patty, C.E. Bartky, Absorption of infrared radiant energy by CO\(_2\) and H\(_2\)O. IV. Shapes of collision-broadened CO\(_2\) lines. J. Opt. Soc. Am. 59, 26778 (1969)Google Scholar
  5. 5.
    M.Y. Perrin, J.M. Hartmann, Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far linewings of the 4.3 µm CO2 band. J. Quant. Spectrosc. Radiat. Transf. 42, 311–317 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    M.V. Tonkov, N.N. Filippov, V.V. Bertsev, J.P. Bouanich, N. Van-Thanh, C. Brodbeck, Measurements and empirical modeling of pure CO\(_2\) absorption in the 2.3 mm region at room temperature: far wings, allowed and collision-induced bands. Appl. Opt. 35, 48634870 (1996)Google Scholar
  7. 7.
    S.A. Clough, F.X. Kneizys, R.W. Davies, Line shape and the water vapor continuum. Atmos. Res. 23, 229241 (1989)CrossRefGoogle Scholar
  8. 8.
    R. Rodrigues, C. Boulet, L. Bonamy, J.M. Hartmann, Temperature, pressure, and perturber dependencies of line-mixing effects in CO\(_2\) infrared spectra. II. Rotational angular momentum relaxation and spectral shift in SigmaSigma bands. J. Chem. Phys. 109, 303747 (1998)Google Scholar
  9. 9.
    C. Boulet, J. Boissoles, D. Robert, Collisionally induced population transfer effect in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wings. J. Chem. Phys. 89, 625634 (1988)CrossRefGoogle Scholar
  10. 10.
    J.M. Hartmann, J.P. Bouanich, C. Boulet, M. Sergent, Absorption of radiation by gases from low to high pressures I Empirical line-by-line and narrow-band statistical models. J. Phys. II France 1, 739762 (1991)CrossRefGoogle Scholar
  11. 11.
    J. Shao, Y. Zhu, S. Wang, D.F. Davidson, R.K. Hanson, A shock tube study of jet fuel pyrolysis and ignition at elevated pressures and temperatures. Fuel 226, 338–344 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Wang, R. Xu, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezinsky, F.N. Egolfopoulos, A physics-based approach to modeling real-fuel combustion chemistry-I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame 193, 502–519 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Xu, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang et al., A physics-based approach to modeling real-fuel combustion chemistry II. Reaction kinetic models of jet and rocket fuels. Combust. Flame 193, 520–537 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Wang, R. Xu, T. Parise, J. Shao, A. Movaghar, D.J. Lee, J. Park, A physics-based approach to modeling real-fuel combustion chemistry IV HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A. Combust. Flame 198, 477–489 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Farooq, J.B. Jeffries, R.K. Hanson, High-pressure measurements of CO\(_2\) absorption near 2.7 mm: Line mixing and finite duration collision effects. J. Quant. Spectrosc. Radiat. Transf. 111, 949960 (2010)Google Scholar
  16. 16.
    R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33(1), 1–40 (2011)CrossRefGoogle Scholar
  17. 17.
    M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol 9(4), 545562 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Werle, A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A 54(2), 197236 (1998)CrossRefGoogle Scholar
  19. 19.
    J. Wolfrum, ’Lasers in combustion: from basic theory to practical devices. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, p. 141 (1998)Google Scholar
  20. 20.
    J.A. Silver, Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. App. Opt. 31(6), 707–717 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    X. Chao, J.B. Jeffries, R.K. Hanson, Absorption sensor for CO in combustion gases using 2.3 \(\mu\)m tunable diode lasers. Meas. Sci. Technol. 20(11), 115201 (2009)ADSGoogle Scholar
  22. 22.
    W.Y. Peng, R. Sur, C.L. Strand, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications. App. Phy. B 122, 188 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    W. Wei, J. Chang, Q. Wang, Z.G. Qin, Modulation index adjustment for recovery of pure wavelength modulation spectroscopy second harmonic signal waveforms. Sensors 17(1), 163–174 (2017)CrossRefGoogle Scholar
  24. 24.
    W. Wei, J. Chang, Y.Y. Liu, X. Chen, Z.J. Liu, Z.G. Qin, Q. Wang, Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement. App. Opt. 55(13), 3526–3530 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 10521061 (2006)Google Scholar
  26. 26.
    K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Wavelength modulation diode laser absorption spectroscopy for high pressure gas sensing. App. Phys. B 110, 497508 (2013)Google Scholar
  27. 27.
    C.K. Westbrook, F.L. Dryer, Chemical kinetic modeling of hydrocarbon. Proy. Energy Combust. Sci. 10, 1–57 (1984)CrossRefGoogle Scholar
  28. 28.
    S.K. Wang, D.F. Davidson, R.K. Hanson, Shock tube and laser absorption study of CH\(_2\)O oxidation via simultaneous measurements of OH and CO. J. Phys. Chem. A 121(45), 8561–8568 (2017)Google Scholar
  29. 29.
    Ameya V. Joshi, Hai Wang, Master equation modeling of wide range temperature and pressure dependence of CO + OH into products. Chem. Kinet. 38(1), 57–73 (2006)CrossRefGoogle Scholar
  30. 30.
    S.H. Pyun, W. Ren, K.Y. Lam, D.F. Davidson, R.K. Hanson, Shock tube measurements of methane, ethylene and carbon monoxide time-histories in DME pyrolysis. Combust. Flame 160, 747754 (2013)CrossRefGoogle Scholar
  31. 31.
    S.K. Wang, D.F. Davidson, R.K. Hanson, Shock Tube measurement for the dissociation rate constant of acetaldehyde using sensitive CO diagnostics. J. Phys. Chem. A 120, 6895–6901 (2016)CrossRefGoogle Scholar
  32. 32.
    S.K. Wang, E.E. Dames, D.F. Davidson, R.K. Hanson, Reaction rate constant of \(\text{ CH$_2$O } + \text{ H } = \text{ HCO } + \text{ H$_2$ }\) revisited: a combined study of direct shock tube measurement and transition state theory calculation. J. Phys. Chem. A 118(44), 10201–10209 (2014)Google Scholar
  33. 33.
    R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. Appl. Opt. 53(9), 1938–1946 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 um. Appl. Phy. B 90(3–4), 619–628 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    A. Farooq, D.F. Davidson, R.K. Hanson, L.K. Huynh, A. Violi, An experimental and computational study of methylester decomposition pathways using shock tubes. Proc. Combust. Inst. 32(1), 247–253 (2009)CrossRefGoogle Scholar
  36. 36.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. App. Opt. 53(3), 356–367 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24, 125203 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Shock tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO. J. Phys. Chem. A 119, 7257–7262 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Michel, C. Juretzka, M. Carras, W. Elsaber, 30\(\%\) improvement in absorption spectroscopy detectivity achieved by the detuned loading of a quantum cascade laser. Opt. Lett. 39(21), 6351–6354 (2014)ADSGoogle Scholar
  40. 40.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, High-pressure shock-tube measurements of ignition delay times in stoichiometric H2/O2/Ar mixtures. Shock waves proceedings of the 20th international symposium on shock waves, vol. 2, p. 941946 (1996)Google Scholar
  42. 42.
    E.L. Petersen, D.F. Davidson, R.K. Hanson, Ignition delay times of ram accelerator CH\(_4\)/O\(_2\)/diluent mixtures. J. Prop. Power 1, 8291 (1999)Google Scholar
  43. 43.
    R.C. Millikan, D.R. White, Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209–3213 (1963)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations