Advertisement

Applied Physics B

, 125:5 | Cite as

Cavity-assisted modulation instability lasing of a fiber ring laser

  • G. D. Shao
  • X. Hu
  • J. Guo
  • Y. F. Song
  • L. M. Zhao
  • D. Y. Shen
  • D. Y. Tang
Article
  • 7 Downloads

Abstract

We report on the experimental evidences of cavity-assisted modulation instability (CAMI) lasing of fiber lasers. We first reviewed the theory of CAMI. We then presented experimental evidences of CAMI lasing of fiber lasers with either an anomalous or a normal dispersion cavity. It is shown that even in a fiber laser without any mode-locking element in cavity, if the orientation of the intracavity polarization controller is changed, a CW emission could be suddenly converted into a stable periodic pulse train emission. Moreover, the repetition rate of the pulse train can be adjusted over a wide range from the fundamental cavity repetition frequency to hundreds of GHz by changing the cavity detuning. We point out that the CAMI lasing should be a general effect of lasers with a nonlinear cavity.

Notes

Acknowledgements

The research is partially supported by the funds of Priority Academic Program Development of Jiangsu High Education Institutions (PAPD), National Natural Science Foundation of China (NSFC) (Grant no.: 61575089) and Minister of Education (MOE) Singapore, Grant no. RG82/16 (2016-T1-001-026).

References

  1. 1.
    K. Tai, A. Hasegawa, A. Tomita, Observation of modulational instability in optical fibers, Phys. Rev. Lett. 56(2), 135–138 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001)zbMATHGoogle Scholar
  3. 3.
    E. Yoshida, M. Nakazawa, Low-threshold 115-GHz continuous wave modulational instability erbium-doped fiber laser. Opt. Lett. 22, 1409–1411 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    C.J.S. de Matos, D.A. Chestnut, J.R. Taylor, Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train. Opt. Lett. 27, 915–917 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Y.D. Gong, P. Shum, D.Y. Tang, C. Lu, X. Guo, 660 GHz soliton source based on modulation instability in a short cavity. Opt. Express 11, 2480–2485 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Haelterman, S. Trillo, S. Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    M. Haelterman, S. Trillo, S. Wabnitz, Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett. 17, 745–747 (1992) 747 )ADSCrossRefGoogle Scholar
  8. 8.
    S. Coen, M. Haelterman, Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett. 79, 4139–4142 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    D.Y. Tang, J. Guo, Y.F. Song, L. Li, L.M. Zhao, D.Y. Shen, GHz pulse train generation in fiber lasers by cavity induced modulation instability. Opt. Fiber Technol. 20, 610–614 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    X. Wu, D.Y. Tang, L.M. Zhao, H. Zhang, Mode-locking of fiber lasers induced by residual polarization dependent loss of cavity components. Laser Phys. 20(10), 1913–1917 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y.F. Song, J. Guo, L.M. Zhao, D.Y. Shen, D.Y. Tang, 280 GHz dark soliton fiber laser. Opt. Lett. 39, 3484–3487 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C. Mahnke, F. Mitschke, Possibility of an Akhmediev breather decaying into solitons. Phys. Rev. A 85, 033808 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    D.Y. Tang, J. Guo, Y.F. Song, G.D. Shao, L.M. Zhao, D.Y. Shen, Temporal cavity soliton formation in an anomalous dispersion cavity fiber laser. J. Opt. Soc. Am. B 31, 3050–3056 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Laser Materials and Devices, School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhouChina
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Wuhan Huaray Ultrafast Fiber Laser Technology Co., LTDWuhanChina

Personalised recommendations