Advertisement

Applied Physics B

, 125:8 | Cite as

Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets

  • T. Z. Zhao
  • T. Batson
  • B. Hou
  • J. A. Nees
  • A. G. R. Thomas
  • K. KrushelnickEmail author
Article

Abstract

X-ray emission resulting from interactions of intense laser pulses with solid metal targets (Ni, Cu, Mo, Ag, and Sn) at 0.5 kHz repetition rate is measured using pulse energies of up to 12 mJ. A comparison of the conversion of laser pulse energy to total X-ray emission energy is made with respect to the previous measurements at lower energy (< 3 mJ). In the present experiments, the total bremsstrahlung conversion efficiency is found to increase by an order of magnitude for all targets as the energy in increased. The Kα line emission conversion efficiency also increases with incident pulse energy for all targets. In addition, the ratio between line and bremsstrahlung emission in the X-ray spectral region was significantly reduced at higher energies because of the large increase in bremsstrahlung. In general, the X-ray source size increases as the laser energy increased and the ellipticity of the X-ray source also increased in the laser polarization direction, with the effect becoming very pronounced at higher energies. Phase-contrast imaging of a nanospray emitter and a 3D printed plastic target was also performed using Cu and Mo targets.

Notes

Acknowledgements

This work is supported by the Defense Advanced Research Projects Agency under contract number N66001-11-1-4208 and by the Air Force Office of Scientific Research under award number FA9550-16-1-0121. The author wishes to acknowledge the Lurie Nanofabrication Facility for their support in coating the targets.

References

  1. 1.
    S.C. Wilks, W.L. Kruer, IEEE J. Quantum Electron. 33, 1954 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    P. Gibbon, E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Z.H. He, B. Hou, V. Lebailly, J.A. Nees, K. Krushelnick, A.G.R. Thomas, Nat. Commun. 6, 7156 (2015)CrossRefGoogle Scholar
  4. 4.
    A.G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.E. Masson-Laborde, B.X. Hou, I. Sokolov, G. Mourou, I.V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, K. Krushelnick, Phys. Rev. Lett. 103, 235001 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    B.X. Hou, J. Nees, J. Easter, J. Davis, G. Petrov, A.G.R. Thomas, K. Krushelnick, MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz. Appl. Phys. Lett. 95, 101503 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J. Hah, J. Nees, M.D. Hammig, K. Krushelnick, A.G.R. Thomas, Plasma Phys. Control. Fusion 60, 054011 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    C. Zulick, B. Hou, F. Dollar, A. Maksimchuk, J. Nees, A.G.R. Thomas, Z. Zhao, K. Krushelnick, New J. Phys. 15, 123038 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L.M. Chen, J.C. Kieffer, C.C. Chamberlain, A. Krol, Appl. Phys. B 83, 1 (2006)CrossRefGoogle Scholar
  9. 9.
    B. Hou, A. Mordovanakis, J. Easter, K. Krushelnick, J.A. Nees, Appl. Phys. Lett. 93, 201503 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    B. Hou, J. Easter, K. Krushelnick, J.A. Nees, Appl. Phys. Lett. 92, 161501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B. Hou, J. Easter, A. Mordovanakis, K. Krushelnick, J.A. Nees, Opt. Express 16, 17695–17705 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J.F. Seely, C.I. Szabo, P. Audebert, E. Brambrink, E. Tabakhoff, L.T. Hudson, Phys. Plasmas 17, 023102 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Seely, C.I. Szabo, P. Audebert, E. Brambrink, Phys. Plasmas 18, 062702 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    C.M. Laperle, P. Wintermeyer, J.R. Wands, D. Shi, M.A. Anastasio, X. Li, B. Ahr, G.J. Diebold, C.R.-Petruck, Appl. Phys. Lett. 91, 173901 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kneip, C. McGuffey, F. Dollar, M.S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, Z. Najmudin, C.A.J. Palmer, J. Schreiber, W. Schumaker, A.G.R. Thomas, V. Yanovsky, Appl. Phys. Lett. 99, 093701 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R. Toth, S. Fourmaux, T. Ozaki, M. Servol, J.C. Kieffer, R.E. Kincaid Jr., A. Krol, Phys. Plasmas 14, 053506 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    R. Toth, J.C. Kieffer, S. Fourmaux, T. Ozaki, A. Krol, Rev. Sci. Instrum. 76, 083701 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Chakera, A. Ali, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. Lett. 93, 261501 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature 384, 28 (1996)CrossRefGoogle Scholar
  20. 20.
    S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, V. Chvykov, F. Doillar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C. Palmer, J. Schreiber, K. Ta Phoac, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick, Z. Najmudin, Nat. Phys. 6, 980 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Boschetto, G. Mourou, A. Rousse, A. Mordovanakis, B.X. Hou, J. Nees, D. Kumah, R. Clarke, Appl. Phys. Lett. 90, 011106 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    J. Weisshaupt, V. Juvé, M. Holtz, S.A. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška, Nat. Photonics 8, 927 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Azamoum, V. Tcheremiskine, R. Clady, A. Ferré, L. Charmasson, O. Utéza, M. Sentis, Sci. Rep. 8, 4119 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    F. Dollar, P. Cummings, V. Chvykov, L. Willingale, M. Vargas, V. Yanovsky, C. Zulick, A. Maksimchuk, A.G.R. Thomas, K. Krushelnick, Phys. Rev. Lett. 110, 175002 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Halas, T. Durakiewicz, J. Phys. 10, 10816 (1998)Google Scholar
  26. 26.
    P.M. Nilson, A.A. Solodov, J.F. Myatt, W. Theobald, P.A. Jaanimagi, L. Gao, C. Stoeckl, R.S. Craxton, J.A. Delettrez, B. Yaakobi, J.D. Zuegel, B.E. Kruschwitz, C. Dorrer, J.H. Kelly, K.U. Akli, P.K. Patel, A.J. Mackinnon, R. Betti, T.C. Sangster, D.D. Meyerhofer, Phys. Rev. Lett. 105, 235001 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Thompson, X-ray data booklet. Lawerence Berkeley National Laboratory, C.A. Berkeley, (presently available at http://xdb.lbl.gov). Accessed Sept 2016 (2001)
  28. 28.
    B. Soom, H. Chen, Y. Fisher, D.D. Meyerhofer, J. Appl. Phys. 74, 5372 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 8 (1964)CrossRefGoogle Scholar
  30. 30.
    NIST Atomic Spectra Database http://www.nist.gov/pml/data/asd.cfm. Accessed Sept 2016
  31. 31.
    G. Kulcsar, D. Al Mawlawi, F.W. Budnik, P.R. Herman, M. Moskovits, L. Zhao, R.S. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Ultrafast Optical ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations