Advertisement

Applied Physics B

, 125:3 | Cite as

Characterization of ultrafast plasmon dynamics in individual gold bowtie by time-resolved photoemission electron microscopy

  • Yulu Qin
  • Boyu Ji
  • Xiaowei SongEmail author
  • Jingquan LinEmail author
Article
  • 74 Downloads

Abstract

We report on the investigation of ultrafast dynamics of the plasmonic field in individual gold bowtie nanostructure by combining interferometric time-resolved photoemission electron microscopy with a damped harmonic oscillator model. We experimentally obtain different plasmon dephasing times in the tips of the bowtie nanostructure. In the meantime, we demonstrate that the experimental time-resolved photoemission signal can be used to directly compare resonance frequency and dephasing time of different hot spots. In addition, we find that the plasmon field, which is extracted from the photoemission signal, initially oscillates at the laser field frequency, and finally develops into its eigenfrequency after experiencing a few periods of frequency fluctuation due to the competition between forced and autonomous oscillation of the plasmons.

Notes

Acknowledgements

This project was supported by the Natural Science Foundation of China under Grant Nos. 91850109, 61775021, 11474040; Science and Technology Department of Jilin Province (20170519018JH, 20180520198JH); Education Department of Jilin Province (JJKH20181104KJ, JJKH20190555KJ, JJKH20190549KJ); “111” project of China (D17017).

References

  1. 1.
    T.K. Hakala, H.T. Rekola, A.I. Väkeväinen, J.P. Martikainen, M. Nečada, P. Törmä, A.J. Moilanen, Nat. Commun. 8, 13687 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    M.L. Brongersma, N.J. Halas, P. Nordlander, Nat. Photon. 10, 25 (2015)Google Scholar
  3. 3.
    C. Clavero, Nat. Photon. 8, 95 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8 (2011)CrossRefGoogle Scholar
  5. 5.
    S.W. Kim, S. Kim, I.Y. Park, J. Choi, Nature 453, 757 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kim, M.F. Kling, M.I. Stockman, S.W. Kim, Nat. Photon. 5, 677 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    T. Klar, M. Perner, S. Grosse, G.V. Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kolwas, A. Derkachova, J. Quant. Spectrosc. Radiat. Transf. 114, 45 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    E.J. Heilweil, R.M. Hochstrasser, J. Chem. Phys. 82, 4762 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, B. Lamprecht, H. Ditlbacher, F.R. Aussenegg, Proc. SPIE 4456, 14–21 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    F. Hubenthal, C. Hendrich, F. Träger, Appl. Phys. B 100, 225 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    B. Lambrecht, A. Leitner, F.R. Aussenegg, Appl. Phys. B 64, 269 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    B. Lambrecht, A. Leitner, F.R. Aussenegg, Appl. Phys. B 68, 419 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Sun, Y. Han, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa, ACS Nano 10, 3835–3842 (2016)CrossRefGoogle Scholar
  17. 17.
    E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C.L. Arnold, H. Xu, A.L. Huillier, A. Mikkelsen, Nano Lett. 15, 6601 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J. Qin, B. Ji, Z. Hao, J. Lin, Chin. Phys. Lett. 32, 61 (2015)Google Scholar
  19. 19.
    A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Nano Lett. 5, 1123 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, H. Misawa, Light Sci. Appl. 2, e118 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Faggiani, A. Losquin, J. Yang, E. Mårsell, A. Mikkelsen, P. Lalanne, ACS Photon. 4, 897 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Losquin, T.T.A. Lummen, Front. Phys. 12, 127301 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Merschdorf, C. Kennerknecht, W. Pfeiffer, Phys. Rev. B 70, 3352 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Aeschlimann, T. Brixner, M. Cinchetti, B. Frisch, B. Hecht, M. Hensen, B. Huber, C. Kramer, E. Krauss, T.H. Loeber, W. Pfeiffer, M. Piecuch, P. Thielen, Light Sci. Appl. 6, e17111 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Ji, J. Qin, H. Tao, Z. Hao, J. Lin, N J. Phys. 18, 093046 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Dąbrowski, Y. Dai, H. Petek, J. Phys. Chem. Lett. 8, 4446 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Cinchetti, A. Gloskovskii, S.A. Nepjiko, G. Schönhense, H. Rochholz, M. Kreiter, Phys. Rev. Lett. 95, 047601 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    M. Xue, W. Wang, F. Wang, J. Ou, C. Li, W. Li, J. Alloys Compd. 577, 1 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Grubisic, V. Schweikhard, T.A. Baker, D.J. Nesbitt, ACS Nano 7, 87 (2013)CrossRefGoogle Scholar
  30. 30.
    P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J.R. Krenn, H. Ulrich, Nano Lett. 13, 674 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, M. Aeschlimann, Appl. Phys. A 88, 473 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Dai, M. Dąbrowski, V.A. Apkarian, H. Petek, ACS Nano 12, 6588 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman, Phys. Rev. B 84, 2461 (2011)Google Scholar
  34. 34.
    E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C.L. Arnold, H. Xu, A.L. Huillier, A. Mikkelsen, Appl. Phys. Lett. 107, 201111 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bayer, C. Wiemann, O. Gaier, M. Bauer, M. Aeschlimann, J. Nanomater. 2008, 249514 (2008)Google Scholar
  36. 36.
    M. Aeschlimann, T. Brixner, A. Fischer, M. Hensen, B. Huber, D. Kilbane, C. Kramer, W. Pfeiffer, M. Piecuch, P. Thielen, Appl. Phys. B 122, 199 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, G.V. Hartland, J. Mater. Chem. 18, 1949 (2008)CrossRefGoogle Scholar
  38. 38.
    C.L. Nehl, H. Liao, J.H. Hafner, Nano Lett. 6, 683 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Phys. Rev. Lett. 89, 257404 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    C. Hrelescu, T.K. Sau, A.L. Rogach, F. Jäckel, G. Laurent, L. Douillard, F. Charra, Nano Lett. 11, 402 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    E. Lorek, E. Mårsell, A. Losquin, M. Miranda, A. Harth, C. Guo, R. Svärd, C.L. Arnold, A.L. Huillier, A. Mikkelsen, J. Mauritsson, Opt. Express 23, 31460 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsChangchun University of Science and TechnologyChangchunChina

Personalised recommendations