Advertisement

Applied Physics B

, 125:2 | Cite as

Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector

  • Elahe Rastegar Pashaki
  • Hassan Kaatuzian
  • Abdolber Mallah Livani
  • Hamed Ghodsi
Article
  • 20 Downloads

Abstract

Silicon-based plasmon detector is a key component in designing CMOS-compatible integrated plasmonic circuits. Internal-photoemission plasmonic detectors in metal–semiconductor–metal (MSM) structure are promising devices for this purpose, because of their ability to detect infrared wavelengths. In this paper, a balanced MSM-integrated plasmon detector device is proposed to isolate the output from dark current. Performance characteristics of the new device are numerically simulated. In a specific bias point (V = 3 V), the output current is 3.18 × 10−5 A, responsivity is 0.1288 A/W, SNR is 21.7 dB and area is about 2 µm2. Simulation results for this balanced plasmon detector, in comparison with experimental results of previous single-MSM device, demonstrate considerable dark current reduction.

References

  1. 1.
    R. Stanley, Plasmonics in the mid-infrared. Nat. Photonics 6, 409–411 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    P. Berini, Surface plasmon photodetectors and their applications. Laser Photonics Rev. (2013).  https://doi.org/10.1002/lpor.201300019 CrossRefGoogle Scholar
  4. 4.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Akbari, R.N. Tait, P. Berini, Surface plasmon waveguide Schottky detector. Opt. Express 18, 8505–8514 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, M. Kohl, Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception. Optica Opt. Soc. Am. 3(7), 741–747 (2016)Google Scholar
  7. 7.
    I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Waveguide-based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20(28602), 28594 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Akbari, A. Olivieri, Berini, Sub-bandgap asymmetric surface plasmon waveguide Schottky detectors on silicon. IEEE J. Sel. Top. Quantum Electron. 19, 4600209 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S.R.J. Brueck, V. Diadiuk, T. Jones, W. Lenth, Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl. Phys. Lett. 46, 915–917 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    J. Rosenburg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, O. Painter, A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl. Phys. Lett. 95, 161101 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Alavirad, A. Olivieri, L. Roy, P. Berini, High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt. Express 24, 22544–22554 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Livani, H. Kaatuzian, Design and simulation of an electrically pumped Schottky junction based plasmonic amplifier. Appl. Opt. 54(9), 2164–2173 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Sundararaman, P. Narang, A.S. Jermyn, W.A. William, H.A. Harry, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. (2014).  https://doi.org/10.1038/ncomms6788 CrossRefGoogle Scholar
  14. 14.
    M. Bernardi, J. Mustafa, J.B. Neaton, S.G. Louie, Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. (2015).  https://doi.org/10.1038/ncomms8044 CrossRefGoogle Scholar
  15. 15.
    R.G. Forbes, J.H.B. Deane, Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. R Soc. A 467, 2927–2947 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    C. Scales, P. Berini, Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46(5), 633–643 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Singh, Semiconductor Devices: Basic Principles (Wiley, Hoboken, 2000) (Chap. 6) Google Scholar
  18. 18.
    M. Cowley, Titanium-silicon Schottky barrier diodes. Solid State Electron. 13, 403–414 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)CrossRefGoogle Scholar
  20. 20.
    B. Ung, Y. Sheng, Interference of surface waves in a metallic nanoslit. Opt. Express 15, 1182–1190 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience Publication, Hoboken, 1981) (Chap. 5) Google Scholar
  22. 22.
    K. Matsuzawa, K. Uchida, A. Nishiyama, A unified simulation of Schottky and ohmic contacts. IEEE Trans. Electron Devices, 47(1), 103–108 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Silvaco Inc. Atlas user’s manual [online] (2013). http://www.silvaco.com/
  24. 24.
    R. Nouchi, Extraction of the Schottky parameters in metal-semiconductor-metal diodes from a single current-voltage measurement. J. Appl. Phys. 116, 184505 (2014).  https://doi.org/10.1063/1.4901467 CrossRefGoogle Scholar
  25. 25.
    A. Klyukanov, P.A. Gashin, R. Scurtu, Ideality factor in transport theory of Schottky barrier diodes (2012). arXiv:1204.0335
  26. 26.
    H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts, 2nd edn. (Oxford University Press, Oxford, 1988)Google Scholar
  27. 27.
    R. Kim, M. Lundstrom, Notes on Fermi–Dirac integrals (2008). arXiv:0811.0116
  28. 28.
    A. Beling et al., Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission. Electron. Lett. 39(16) 1204–1205 (2003).  https://doi.org/10.1049/el:20030787 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elahe Rastegar Pashaki
    • 1
  • Hassan Kaatuzian
    • 1
  • Abdolber Mallah Livani
    • 2
  • Hamed Ghodsi
    • 1
  1. 1.Photonics Research Laboratory, Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Electrical Engineering DepartmentMazandaran University of Science and TechnologyBehshahrIran

Personalised recommendations