Advertisement

Applied Physics B

, 124:239 | Cite as

Long-range interactions of double beams in party-time symmetric lattices in the presence of nonlocal nonlinearities

  • Weiyi Hong
  • Manling Xu
Article
  • 40 Downloads

Abstract

The co-propagation of double beams in party-time symmetric lattices in the presence of nonlocal nonlinearities has been investigated. An interesting phenomenon has been found that the energy of the beam in the right side has increased almost monotonously, while it oscillates in the absence of nonlinearities. The energy increase can be controlled by adjusting the incident angle of the beam in the left side, since light propagating in party-time symmetric arrays can distinguish left from right. This findings pave the way to all-optical controls in the nonlinear regime.

Notes

Funding

Natural Science Foundation of Guangdong Province, China (2016A030313428).

References

  1. 1.
    C.M. Bender, S. Boettcher, Real spectra in non-hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Yao, X. Liu, Beam dynamics in disordered PT-symmetric optical lattices based on Eigenstate analyses. Phys. Rev. A 95, 033804 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Z. shi, X. Jiang, X. Zhu, H. Li, Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials. Phys. Rev. A 84, 053855 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S.V. Dmitriev, A.A. Sukhorukov, Y.S. Kivshar, Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 35, 2976–2978 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.V. Kartashov, V.A. Vysloukh, L. Torner, Asymmetric soliton mobility in competing linear–nonlinear parity-time-symmetric lattices. Opt. Lett. 41, 4348–4351 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Y. He, X. Zhu, D. Mihalache, J. Liu, Z. Chen, Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices. Phys. Rev. A 85, 013831 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A.W. Snyder, D.J. Mitchell, Accessible solitons. Science 276, 1538–1541 (1997)CrossRefGoogle Scholar
  13. 13.
    G. Assanto, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals (Wiley, Hoboken, 2013)zbMATHGoogle Scholar
  14. 14.
    X. Chen, G. Zhang, H. Zeng, Q. Guo, W. She, Advances in Nonlinear Optics (De Gruyter, Berlin, 2015), pp. 227–305Google Scholar
  15. 15.
    C. Conti, M. Peccianti, G. Assanto, Route to nonlocality and observation of accessible solitons. Phys. Rev. Lett. 91, 073901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    C. Conti, M. Peccianti, G. Assanto, Observation of optical spatial solitons in highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Xu, Y.V. Kartashov, L. Torner, Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media. Opt. Lett. 30, 3171–3173 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys. Rev. E 66, 046619 (2002)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Ouyang, Q. guo, Dark and gray, spatial optical solitons in Kerr-type nonlocal media. Opt. Express 17, 5170–5175 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    C. Rotschild, B. Alfassi, O. Cohen, M. Segev, Long-range interactions between optical solitons. Nat. Phys. 2, 769–774 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Peccianti, K.A. Brzdakiewicz, G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals. Opt. Lett. 27, 1460–1462 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    D. Lu, W. Hu, Theory of multibeam interactions in strongly nonlocal nonlinear media. Phys. Rev. A 80, 053818 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Elsevier Pte Ltd., Amsterdam, 2015)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations