Applied Physics B

, 124:236 | Cite as

Dynamical behavior of self-accelerating beams in LiNbO3 crystal with background illumination

  • Meizhi Zhang
  • Tongyi Zhang
  • Guangwen Huo
  • Xinwei Zha
  • Zhanqiang Hui
  • Hua Zhou


We theoretically study the propagations and interactions of an Airy beam, soliton, and nonlinear self-accelerating beam in LiNbO3 crystal modulated by a shorter wavelength background beam. Simulations indicate that the self-accelerating beam and Airy beam can effectively propagate even in self-defocusing media, and the finite-energy Airy beam can generate bright solitons in a self-focusing medium. When two counter-shift Airy beams interact under appropriate conditions, fusion solitons, breathing solitons, and soliton pairs are generated. If we allow a photovoltaic soliton to collide with an Airy beam, X-type waves and soliton deflection occur at a specific phase shift and beam interval. Moreover, we find that the dynamics of two truncated nonlinear self-accelerating beams tend to exhibit straight propagation with attraction and repulsion in the in- and out-of-phase cases, respectively. These results are significant for applications related to optical routing and optical switches.



The work is supported by the National Natural Science Foundation of China (Nos. 61875228, 61475191, 61875165), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017ZDJC-27), the Scientific Research Program funded by the Shaanxi Provincial Education Department (No. 18JK0723), and the New Star Team of Xi’an University of Posts & Telecommunications (2016).


  1. 1.
    R. Kaminer, J. Bekenstein, M. Nemirovsky, Segev, Phys. Rev. Lett. 108, 163901 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    G. ASiviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    X. Chu, W. Wen, Opt. Express 22, 6899 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    T. Ellenbogen, N. Voloch, A. Ganany-Padowicz, A. Arie, Nat. Photonics 3, 395 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Baumgartl, M. Mazilu, K. Dholakia, Nat. Photonics 2, 675 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Patrick, D. Falko, B. Martin, D. Cornelia, Appl. Phys. Lett. 102, 046602 (2013)Google Scholar
  7. 7.
    N. Wiersma, N. Marsal, M. Sciamanna, D. Wolfersberger, Opt. Lett. 39, 5997 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Jia, J.C. Vaughan, X. Zhuang, Nat. Photonics 8, 302 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Minovich, A.E. Klein, N. Janunts, T. Pertsch, D.N. Neshev, Y.S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    P. Piksarv, D. Marti, T. Le, A. Unterhuber, L.H. Forbes, M.R. Andrews, A. Stingl, W. Drexler, P.E. Andersen, K. Dholakia, Sci. Rep. 7, 1435 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    C. Ament, P. Polynkin, J.V. Moloney, Phys. Rev. Lett. 107, 243901 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, X. Zhang, Phys. Rev. Lett. 109, 193901 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, Z. Chen Opt. Lett. 37, 2820 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    N. Wiersma, N. Marsal, M. Sciamanna, D. Wolfersberger, Sci. Rep. 6, 35078 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    P. Aleahmad, M.A. Miri, M.S. Mills, I. Kaminer, M. Segev, D.N. Christodoulides, Phys. Rev. Lett. 109, 203902 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhang, H. Zhong, M.R. Belić, C. Li, Z. Zhang, F. Wen, Y. Zhang, M. Xiao, Opt. Lett. 41, 3273 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    W.P. Zhong, M. Belić, Y. Zhang, Opt. Express 23, 23867 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, T. Peng, Phys. Lett. A 379, 983 (2015)CrossRefGoogle Scholar
  19. 19.
    S.A. Derevyanko, Phys. Rev. A 95, 013802 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Qian, L. Dong, H. Mao, IEEE Photonics J. 9, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D.G. Papazoglou et al., Phys. Rev. A 86, 013842 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y.Q. Zhang, M.R. Belić, L. Zhang, W.P. Zhong, D.Y. Zhu, R.M. Wang, Y.P. Zhang, Opt. Express 23, 10467 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Z.K. Wu, P. Li, Y.Z. Gu, Front. Phys. 12, 124203 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, H. Zhong, M.R. Belić, X. Liu, W. Zhong, Y. Zhang, M. Xiao Opt. Lett. 40, 5742 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    R. Driben, V.V. Konotop, T. Meier, Opt. Lett. 39, 5523 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, T. Xu, Opt. Express 25, 9285 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    F. Diebel, B.M. Bokić, D.V. Timotijević, D.M. Jović Savić, C. Denz, Opt. Express 23, 24351 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    S. Jia, J. Lee, J.W. Fleischer, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 104, 253904 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, M.R. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, Y. Zhang, Opt. Lett. 38, 4585 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zhang, M.R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, Y. Zhang, Opt. Express 22, 7160 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M. Shen, W. Li, R.K. Lee, Opt. Express 24, 8501 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Shen, J. Gao, L. Ge, Sci. Rep. 5, 9814 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    W.L. She, K.K. Lee, W.K. Lee, Phys. Rev. Lett. 83, 3182 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    M. Taya, M.C. Bashaw, M.M. Fejer, M. Segev, G.C. Valley, Phys. Rev. A 52, 3095 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    C. Anastassiou, M.F. Shih, M. Mitchell, Z. Chen, M. Segev, Opt. Lett. 23, 924 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    M. Zhang, K. Lu, G. Cheng, Y. Zhang, K. Li, L. Zhang, Y.P. Zhang, Optik 121, 575 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    W.L. She, C.H. Xu, B. Guo, W.K. Lee, J. Opt. Soc. Am. B 23, 2127 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Zhang, G. Huo, Z. Duan, Chaos Soliton. Fract. 85, 51 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M. Segev, G.C. Valley, M.C. Bashaw, M. Taya, M.M. Fejer, J. Opt. Soc. Am. B 14, 1772 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    G. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, M. Bashaw, Phys. Rev. A 50, R4457 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    M. Kaminer, D.N. Segev, Christodoulides, Phys. Rev. Lett. 106, 213903 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    W. Lu, Y. Zhao, Y. Yang, X. Yang, Y. Liu, J. Zhang, Xu, J. Mod. Opt. 53, 2137 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics EngineeringXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Mathematics and PhysicsWeinan Normal UniversityWeinanChina
  5. 5.Department of Applied Mathematics and PhysicsXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations