Advertisement

Applied Physics B

, 124:234 | Cite as

A single-stage 1112 nm fiber amplifier with large gain for laser cooling of ytterbium

  • Tobias Franzen
  • Bastian Pollklesener
  • Axel Görlitz
Article
  • 41 Downloads

Abstract

We present a single-stage Yb fiber amplifier pumped at 1064 nm which amplifies a low-power (5 mW) signal from a commercial distributed feedback (DFB) fiber laser at 1112 nm to several hundred mW. Compared to conventional fiber amplifiers, which are typically pumped at shorter wavelength, the single-stage gain of the amplifier is increased to more than 20 dB and the ASE level is reduced by an order of magnitude. Frequency doubling in a PPLN waveguide produces light at 556 nm, which is used to capture Yb atoms in a magneto-optical trap on the 1S0\(\rightarrow\) 3P1 intercombination line.

Notes

Acknowledgements

We thank Ralf Stephan for his work on the electronic and mechanical components and Stephan Schiller for loan of the optical spectrum analyzer. T.F. acknowledges a fellowship from Prof.-W.-Behmenburg-Schenkung.

References

  1. 1.
    T. Kuwamoto, K. Honda, Y. Takahashi, T. Yabuzaki, Magneto-optical trapping of yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A. Guttridge, S.A. Hopkins, S.L. Kemp, D. Boddy, R. Freytag, M.P.A. Jones, M.R. Tarbutt, E.A. Hinds, S.L. Cornish, Direct loading of a large Yb MOT on the transition. J. Phys. B Atom. Mol. Opt. Phys. 49(14), 145006 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    N. Kostylev, C.R. Locke, M.E. Tobar, J.J. McFerran, Spectroscopy and laser cooling on the 1S0 - 3P1 line in Yb via an injection-locked diode laser at 1111.6 nm. Appl. Phys. B 118(4), 517–525 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    S.C. Burd, D.T.C. Allcock, T. Leinonen, J.P. Penttinen, D.H. Slichter, R. Srinivas, A.C. Wilson, P. ördens, VECSEL systems for the generation and manipulation of trapped magnesium ions. Optica 3(12), 1294–1299 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Feng, L. Taylor, D.B. Calia, Multiwatts narrow linewidth fiber Raman amplifiers. Opt. Express 16(15), 10927–10932 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium. Appl. Phys. B 92(1), 33–35 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D.A. Grukh, A.S. Kurkov, V.M. Paramonov, E.M. Dianov, Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers. Quantum Electron. 34(6), 579 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    H. Jeong, H. Park, S. Kim, J. Kim, Chulsoo Byun, Cheolho Kim, Output power improvement in an Yb-doped fiber laser with an additional unpumped Yb-doped fiber. Opt. Rev. 19(2), 86–88 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Koponen, M. Söderlund, H.J. Hoffman, D.A.V. Kliner, J.P. Koplow, and Mircea Hotoleanu. Photodarkening rate in Yb-doped silica fibers. Appl. Opt. 47(9), 1247–1256 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, G. Santarelli, 25W single-frequency, low noise fiber MOPA at 1120nm. Opt. Lett. 43(2), 308–311 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    M.P. Kalita, S.U. Alam, C. Christophe, S. Yoo, A.J. Boyland, M. Ibsen, J.K. Sahu, Multi-watts narrow-linewidth all fiber Yb-doped laser operating. Opt. Express 18(6), 5920–5925 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Mackechnie, W.L. Barnes, D.C. Hanna, J.E. Townsend, High power ytterbium (Yb3+)-doped fibre laser operating in the 1.12 \(\mu\)m region. Electron. Lett. 29(1), 52–53 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Kurkov, V.M. Paramonov, O.I. Medvedkov, Ytterbium fiber laser emitting at 1160 nm. Laser Phys. Lett. 3(10), 503 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Kurkov, E.M. Dianov, Moderate-power cw fibre lasers. Quantum Electron. 34(10), 881 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. E. Gray , D. W. Allan. A Method for Estimating the Frequency Stability of an Individual Oscillator. In 28th Annual Symposium on Frequency Control, pp. 243–246, May (1974)Google Scholar
  17. 17.
    Carl Hippler, Ein selbstgebauter Ytterbium-Faserverstärker mit 25 W Ausgangsleistung bei 1064 nm zur Realisierung eines optischen Gitters für ultrakalte RbCs-Moleküle. Master’s thesis (TU München, 2013)Google Scholar
  18. 18.
    C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quantum Electron. 30(8), 1817–1830 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    S. Höfer, A. Liem, J. Limpert, H. Zellmer, Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power. Opt. Lett. 26, 1326–1328 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    C. Bruni, A. Görlitz, Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb. Phys. Rev. A 94, 022503 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    C. Bruni, F. Münchow, A. Görlitz, Optical Autler-Townes spectroscopy in a heteronuclear mixture of laser-cooled atoms. Appl. Phys. B 123(1), 6 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    T.H. Loftus, T. Ido, M.M. Boyd, A.D. Ludlow, Jun Ye, Narrow line cooling and momentum-space crystals. Phys. Rev. A 70, 063413 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    S.L. Kemp, K.L. Butler, R. Freytag, S.A. Hopkins, E.A. Hinds, M.R. Tarbutt, S.L. Cornish, Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. Rev. Sci. Instrum. 87(2), 023105 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T. Topcu, A. Derevianko, Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices. J. Phys. B Atom. Mol. Opt. Phys. 49(14), 144004 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    F. Gerbier, J. Dalibard, Gauge fields for ultracold atoms in optical superlattices. N. J. Phys. 12(3), 033007 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Riedmann, H. Kelkar, T. Wübbena, A. Pape, A. Kulosa, K. Zipfel, D. Fim, S. Rühmann, J. Friebe, W. Ertmer, E. Rasel, Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms. Phys. Rev. A 86, 043416 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I.V. Sherstov, P.O. Schmidt, A single laser system for ground-state cooling of 25Mg+. Appl. Phys. B 104(3), 583–590 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, F. Ferlaino, Narrow-line magneto-optical trap for erbium. Phys. Rev. A 85, 051401 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations