Advertisement

Applied Physics B

, 124:232 | Cite as

Reynolds number and diffusion coefficient of micro- and nano-aerosols in optical pipelines

  • Amin Mousavi
  • Fahimeh Hosseinibalam
  • Smaeyl Hassanzadeh
Article
  • 44 Downloads

Abstract

In this study, the microscopic particle motion inside an optical pipeline, such as particle motion through a mechanical tube, is investigated. The photons in an optical tube guide the particles towards the center of the light beam by inducing photophoretic and radiation pressure forces. Laguerre–Gaussian- and Bessel-like beams are examples of such optical tubes. The Reynolds number of particle motion in optical tubes is investigated. The power of the light beam and the ratio of the particle radius to the light beam ring radius influence the turbulence of the particle flow and the value of the Reynolds number. The diffusion coefficient of particle movement in such pipelines is derived, which indicates that an optical tube is a good tool for guiding and trapping particles in micron- and nanometer-scale dimensions.

References

  1. 1.
    D. McGloin, D.R. Burnham, M.D. Summers, D. Rudd, N. Dewar, S. Anand, Optical manipulation of airborne particles: techniques and applications. Faraday Discuss. 137, 335–350 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Burnham, D. McGloin, Modeling of optical traps for aerosols. JOSA B 28, 2856–2864 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Zhang, D. Cannan, J. Liu, P. Zhang, D.N. Christodoulides, Z. Chen, Observation of trapping and transporting air-borne absorbing particles with a single optical beam. Opt. Express 20, 16212–16217 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    O. Schmidt, M. Garbos, T. Euser, P.S.J. Russell, Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. Opt. Lett. 37, 91–93 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    Sh. Tehranian, Photophoresis of micrometer-sized particles in the free-molecular regime. Int J Heat Mass Transf, 44, 1649Google Scholar
  8. 8.
    F. Ehrenhaft, On the physics of millionths of centimeters. Phys. Z 18, 352–368 (1917)Google Scholar
  9. 9.
    A.S. Desyatnikov, V.G. Shvedov, A.V. Rode, W. Krolikowski, Y.S. Kivshar, Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt. Express 17, 8201–8211 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Summers, J. Reid, D. McGloin, Optical guiding of aerosol droplets. Opt. express 14, 6373–6380 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    N. Eckerskorn, R. Bowman, R.A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M.J. Padgett, H.N. Chapman, A. Rode, Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum. Phys. Rev. Appl 4, 064001 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Rodrigo, A.M. Caravaca-Aguirre, T. Alieva, G. Cristóbal, M.L. Calvo, Microparticle movements in optical funnels and pods. Opt. Express 19, 5232–5243 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    N. Eckerskorn, L. Li, R.A. Kirian, J. Küpper, D.P. DePonte, W. Krolikowski, W.M. Lee, H.N. Chapman, A.V. Rode, Hollow Bessel-like beam as an optical guide for a stream of microscopic particles. Opt. Express 21, 30492–30499 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    E.J. Davis, G. Schweiger, in “The airborne microparticle: its physics, chemistry, optics, and transport phenomena”, ed. by S.S.B. Media (Springer, Berlin, 2002), pp. 755–810CrossRefGoogle Scholar
  15. 15.
    S. Beresnev, V. Chernyak, G. Fomyagin, Photophoresis of a spherical particle in a rarefied gas. Phys. Fluid A Fluid Dyn 5, 2043–2052 (1993) (1989–1993)ADSCrossRefGoogle Scholar
  16. 16.
    A. Melzer, Laser manipulation of particles in dusty plasmas. Plasma Source. Sci. Technol. 10, 303 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    H.C. Weng, On the importance of thermal creep in natural convective gas micro flow with wall heat fluxes. J. Phys. D Appl. Phys. 41, 115501 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    YU. I.Yalamov,V. B.Kutukov, andE. R.Shchukin, Theory of the photophoretic motion of the large-size volatile aerosol particle. J. Colloid Interface Sci. 57, 564–571(1976)ADSCrossRefGoogle Scholar
  19. 19.
    F.F. Abraham, A.C. Zettlemoyer, Homogeneous nucleation theory. Phys. Today 27, 12–52 (1974)CrossRefGoogle Scholar
  20. 20.
    M.K. Alam, The effect of van der waals and viscous forces on aerosol coagulation. Aerosol. Sci. Technol. 6, 41–52 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    M.D. Allen, O.G. Raabe, Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. J. Aerosol. Sci. 13, 537–547 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, Amsterdam, 1960)Google Scholar
  23. 23.
    B.V. Derjaguian, Y.I. Yalamov, The Theory of Thermophoresis and Diffusiophoresis of Aerosol Particles and Their Experimental Testing (Pergamon Press, Oxford, 1972)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IsfahanIsfahanIran

Personalised recommendations