Advertisement

Applied Physics B

, 124:237 | Cite as

Combined temporal and spatial laser pulse shaping for two-photon excited fluorescence contrast improvement

  • A. Kussicke
  • M. Tegtmeier
  • A. Patas
  • F. Büchau
  • K. Heyne
  • A. Lindinger
Article
  • 64 Downloads

Abstract

We report on combined simultaneous temporal and spatial laser pulse shaping by utilizing light polarization properties. Thereto, a setup comprising a temporal pulse shaper, a waveplate, and a spatial shaper was developed and characterized by comparison with simulations. This enables to simultaneously shape one polarization component temporally and spatially while the perpendicular polarization component is modified temporally. The spatially and temporally modulated light fields were recorded and visualized by suitable contour plots, which was particularly demonstrated for cylindrically symmetric pulse profiles. Moreover, temporally and spatially shaped pulses were applied for two-photon excited fluorescence of dyes. These measurements were conducted by scanning third order phase functions for specific spatial pulse components which yields an enhanced contrast difference between fluorescing dyes. The presented temporal and spatial shaping method of ultrashort laser pulses has a high potential for biophotonic applications.

Notes

Acknowledgements

The Klaus Tschira Foundation (KTS) is acknowledged for financial support (project 00.314.2017).

References

  1. 1.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919–922 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, G. Gerber, Phys. Rev. Lett. 94, 068305 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S.M. Weber, L. Wöste, Phys. Rev. Lett. 93, 033001 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    W. Wohlleben, T. Buckup, J.L. Herek, M. Motzkus, ChemPhysChem 6, 850–857 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301–304 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500–1503 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    T. Brixner, G. Gerber, ChemPhysChem 4, 418–438 (2003)CrossRefGoogle Scholar
  8. 8.
    F. Weise, A. Lindinger, Appl. Phys. B 101, 79–91 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K.A. Walowicz, I. Pastirk, V.V. Lozovoy, M. Dantus, Phys. Chem. A 106, 9369–9373 (2002)CrossRefGoogle Scholar
  10. 10.
    W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73–76 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    S. Perry, R. Burke, E. Brown, Ann. Biomed. Eng. 40, 277 (2012)CrossRefGoogle Scholar
  12. 12.
    V.V. Lozovoy, I. Pastirk, K.A. Walowicz, M. Dantus, J. Chem. Phys. 118, 3187–3196 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Lett. 30, 1479–1481 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte, Laser Photonics Rev. 5, 81–101 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Lasers Eng. 45, 737–741 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Hell, J. Wichmann, Opt. Lett. 19, 780–782 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    G. Moneron, S. Hell, Opt. Exp. 17, 14567–14573 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    T. Feurer, J.C. Vaughan, R.M. Koehl, K.A. Nelson, Opt. Lett. 27, 652–654 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Snare, F.E. Treloar, K.P. Ghiggino, P.J. Thistllethwaite, J. Photochem. 18, 335–346 (1982)CrossRefGoogle Scholar
  20. 20.
    R.F. Kubin, A.N. Fletcher, J. Luminescence 27, 455–462 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    J.H. Richardson, L.L. Steinmetz, S.B. Deutscher, W.A. Bookless, W.L. Schmelzinger, J. Phys. Chem. 33, 1592–1593 (1978)Google Scholar
  22. 22.
    T. Wu, J. Tang, B. Hajj, M. Cui, Opt. Express 19, 12961 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N.A. Carvajal, C.H. Acevedo, Y.T. Moreno, Int. J. Opt. 2017, 6852019 (2017)Google Scholar
  24. 24.
    A. Patas, G. Achazi, N. Hermes, M. Pawowska, A. Lindinger, Appl. Phys. B 112, 579–586 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    G.M. van Dam, G. Themelis, L.M.A. Crane, N.J. Harlaar, R.G. Pleijhuis, W. Kelder, A. Sarantopoulos, J.S. de Jong, H.J.G. Arts, A.G.J. van der Zee, J. Bart, P.S. Low, V. Ntziachristos, Nat. Med. 17, 1315 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P.L. Choyke, H. Kobayashi, Nat. Med. 15, 104 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikFreie Universität BerlinBerlinGermany

Personalised recommendations