Applied Physics B

, 124:230 | Cite as

Optical characterization of SiC films grown on Si(111)

  • Raghavendra Rao Juri
  • John Lundsgaard Hansen
  • Peter Kjær Kristensen
  • Brian Julsgaard
  • Kjeld PedersenEmail author


Thin SiC films, grown on Si by substitution of C into Si on Si substrates with and without a SiGe buffer layer, have been investigated with optical techniques. The formation of SiC domains leads to strong green and blue photoluminescence from stacking faults and surface oxides. Introduction of a 10-nm-thick SiGe buffer layer leads to improved crystallinity as evidenced by X-ray diffraction and optical second-harmonic generation (SHG). Nonlinear optical azimuthal rotational spectra demonstrate the presence of cubic SiC in the film. Furthermore, angle-of-incidence scans are consistent with simulations based on a film with cubic symmetry which demonstrates that the cubic phase dominates the SiC film. Growth on vicinal Si(111) leads to a SiC film with the same c1v symmetry as the substrate, demonstrating that the lattice planes of the SiC film follow those of the Si substrate. Spatially resolved SHG scans show structures that are related to the underlying structure of the Si interface resulting from the growth process.



This work was supported by Innovation Fund Denmark (Grant no. 1305-00005B).


  1. 1.
    H. Fang, M. Katagiri, H. Miyake, K. Hiramatsu, H. Oku, H. Asamura, K. Kawamura, J. Appl. Phys. 115, 063102 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Y.H. Zhu, J.C. Zhang, Z.T. Chen, T. Egawa, J. Appl. Phys. 106, 124506 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J. Komiyamaa, Y. Abe, S. Suzuki, H. Nakanishi, Appl. Phys. Lett. 88, 091901 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, Phys. Solid State 56, 1507 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Kukushkin, A.V. Osipov, J. Phys. D Appl. Phys. 47, 313001 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R.R. Juluri, P. Gaiduk, J.L. Hansen, A.N. Larsen, B. Julsgaard, Thin Solid Films 662, 103 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    L.E. Brus, P.F. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, P.H. Citrin, J. Chem. Soc. 117, 2915 (1995)CrossRefGoogle Scholar
  8. 8.
    J.Y. Fan et al., Prog. Mater. Sci. 51, 983 (2006)CrossRefGoogle Scholar
  9. 9.
    R.P. Devaty, W.J. Choyke, Phys. Status Solidi (a) 162, 5 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Bottomley, G. Lüpke, J. Mihaychuk, H.M. van Driel, J. Appl. Phys. 74, 6072 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    C. Jordan, H. Schillinger, L. Dressler, S. Karmann, W. Richter, K. Goetz, G. Marowsky, R. Sauerbrey, Appl. Phys. A 65, 251 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    C. Meyer, G. Lüpke, E. Stein von Kamienski, A. Gölz, H. Kurtz, Diam. Relat. Mater. 6, 1374 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Raskheev, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 57, 9705 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    R. Tanuma, H. Tsuchida, Appl. Phys. Express 7, 021304 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    R. Hristu, S.G. Stanciu, D.E. Tranca, A. Matei, G.A. Stanciu, Sci. Rep. 4, 5258 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S. Madapura, A.J. Steckl, M. Loboda, J. Electrochem. Soc. 146, 1197 (1999)CrossRefGoogle Scholar
  17. 17.
    W. Lu, Y. Ou, E.M. Fiordaliso, Y. Iwasa, V. Jokubavicius, M. Syväjärvi, S. Kamiyama, P.M. Petersen, H. Ou, Sci. Rep. 7, 9798 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    O. Konstantinov, A. Henry, C.I. Harris, E. Janzén, Appl. Phys. Lett. 66, 2250 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    L. Brus, J. Phys. Chem. 98, 3575–3581 (1994)CrossRefGoogle Scholar
  20. 20.
    J.Y. Fan, X.L. Wu, and P.K. Chu, Prog. Mater. Sci. 51, 983 (2006)CrossRefGoogle Scholar
  21. 21.
    S.G. Sridhara, T.J. Eperjesi, R.P. Devaty, W.J. Choyke, Mater. Sci. Eng. B 61, 229 (1999)CrossRefGoogle Scholar
  22. 22.
    T. Matsumoto, J. Takahashi, T. Tamaki, T. Futagi, H. Mimura, Appl. Phys. Lett. 64, 226 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    D. Beke, Z. Szekrényes, Z. Czigány, K. Kamarás, Á. Gali, Nanoscale 7, 10982 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Wang, S. Liu, T. Ding, S. Huang, C. Qian, Mater. Chem. Phys. 135, 1005 (2012)CrossRefGoogle Scholar
  25. 25.
    Z. Li, W. Gao, A. Meng, Z. Geng, L. Gao, J. Phys. Chem. C 113, 91 (2009)CrossRefGoogle Scholar
  26. 26.
    W. Windl, K. Karch, P. Pavone, O. Schütt, D. Strauch, W.H. Weber, K.C. Hass, L. Rimai, Phys. Rev. B 49, 8764 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhang, W. Yang, H. Jin, Z. Zheng, Z. Xie, H. Miao, L. An, Appl. Phys. Lett. 89, 143101 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    H.Z. Zong, X.M. Bao, N.S. Li, X.L. Wu, Appl. Phys. Lett. 72, 356 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    J.E. Sipe, D.J. Moss, H.M. van Driel, Phys. Rev. B 35, 1129 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    I. Shoji, T. Kondo, R. Ito, Opt. Quantum Electron. 34, 797 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, F. Bechstedt, Appl. Phys. Lett. 75, 618 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    W. Daum, Appl. Phys. A 87, 451 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    E.D. Palik, Handbook of Optical Constants of Solids, 1st edn. (Elsevier, Amsterdam, 1998)Google Scholar
  34. 34.
    R.C. Miller, Appl. Phys. Lett. 5, 17 (1964)ADSCrossRefGoogle Scholar
  35. 35.
    F. De Leonardis, R.A. Soref, V.M.N. Passaro, Sci. Rep. 7, 40924 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  2. 2.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  3. 3.Department of Materials and ProductionAalborg UniversityAalborg ØstDenmark

Personalised recommendations