Advertisement

Applied Physics B

, 124:233 | Cite as

The enhancement of the abruptly autofocusing property with multiple circular Airy beams carrying lens phase factors

  • Mingli Sun
  • Kaikai Huang
  • Yong Zha
  • Huizhu Hu
  • Nan Li
  • Xian Zhang
  • Bocheng Zhu
  • Xuanhui Lu
Article
  • 66 Downloads

Abstract

To improve the abruptly autofocusing property of circular Airy beam, we propose a method to generate multiple circular Airy beams (MCAB) carrying lens phase factors using a spatial light modulator (SLM). The propagation dynamics of this kind of beam is theoretically simulated, as well as experimentally verified. It is shown that four identical beams are produced symmetrically and they can move toward the center simultaneously. By changing the lens phase information encoded in the SLM, we can achieve different focal positions and focal intensities as we want. With the same parameters, compared with a single circular Airy beam (SCAB), there are two focal planes and the abruptly autofocusing property can be greatly enhanced. It may have some applications in various fields.

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2017YFB0503100); National Program for Special Support of Top-Notch Young Professionals, and the Fundamental Research Funds for the Central Universities (2016XZZX004-01, 2018FZA5002); The National Natural Science Foundation of China (Grant no. 11474254); Ministry of Industry and Information Technology of the People’s Republic of China (MIIT) (JCKY2016110B004).

References

  1. 1.
    V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Nature 419, 145–147 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    V. Garcés-Chávez, D. McGloin, K. Dholakia, Opt. Lett. 28, 657–659 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K. Dholakia, P. Reece, M. Gu, Chem. Soc. Rev. 37, 42–55 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Grosjean, D. Courjon, C. Bainier, Opt. Lett. 32, 976–978 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K. Wang, L. Zeng, C. Yin, Opt. Commun. 216, 99–103 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kitamura, K. Sakai, S. Noda, Opt. Express 18, 4518–4525 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S.N. Khonina, I. Golub, J. Opt. Soc. Am. A 30, 2029–2033 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    G. Biener, A. Niv, V. Kleiner, E. Hasman, Opt. Lett. 30, 1096–1098 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S.N. Khonina, I. Golub, Opt. Lett. 40, 4070–4073 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J. Durnin, J.J. Miceli Jr., J.H. Eberly, Phys. Rev. Lett. 58, 1499–1501 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Hall, Opt. Lett. 21, 9–11 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Kotlyar, R.V. Skidanov, S.N. Khonina, V.A. Soifer, Opt. Lett. 32, 742–744 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, S. Chávez-Cerda, Opt. Lett. 25, 1493–1495 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Cottrell, J.A. Davis, T.M. Hazard, Opt. Lett. 34, 2634–2636 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Davis, M.J. Mitry, M.A. Bandres, I. Ruiz, K.P. McAuley, D.M. Cottrell, Appl. Opt. 48, 3170–3176 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979–981 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Opt. Lett. 33, 207–209 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Opt. Express 16, 12880–12891 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Salandrino, D.N. Christodoulides, Opt. Lett. 35, 2082–2084 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    D. Abdollahpour, S. Suntsov, D.G. Papazoglou, S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    W.H. Chong, D.N. Renninger, Christodoulides, F.W. Wise, Nat. Photonics 4, 103 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J. Baumgartl, M. Mazilu, K. Dholakia, Nat. Photonics 2, 675–678 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    H. Cheng, W. Zang, W. Zhou, J. Tian, Opt. Express 18, 20384–20394 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Zheng, B.F. Zhang, H. Chen, J. Ding, H.T. Wang, Appl. Opt. 50, 43–49 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Gu, G. Gbur, Opt. Lett. 35, 3456–3458 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Science 324, 229–232 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    J.X. Li, W.P. Zang, J.G. Tian, Opt. Express 18, 7300–7306 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    N.K. Efremidis, D.N. Christodoulides, Opt. Lett. 35, 4045–4047 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D.G. Papazoglou, N.K. Efremidis, D.N. Christodoulides, S. Tzortzakis, Opt. Lett. 36, 1842–1844 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P. Chremmos, J. Zhang, N.K. Prakash, D.N. Efremidis, Christodoulides, Z. Chen, Opt. Lett. 36, 3675–3677 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    N.K. Chremmos, Efremidis, D.N. Christodoulides, Opt. Lett. 36, 1890–1892 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Jiang, K. Huang, X. Lu, Opt. Express 21, 24413–24421 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    N.K. Efremidis, V. Paltoglou, W. von Klitzing, Phys. Rev. A 87, 043637 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Opt. Lett. 36, 2883–2885 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    D. Chremmos, Z. Chen, D.N. Christodoulides, N.K. Efremidis, Phys. Rev. A 85, 023828 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    P. Vaveliuk, A. Lencina, J.A. Rodrigo, O.M. Matos, Opt. Lett. 39, 2370–2373 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    S.N. Khonina, A.P. Porfirev, A.V. Ustinov, J. Opt. 20, 025605 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Jiang, K. Huang, X. Lu, Opt. Express 20, 18579–18584 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    N. Li, Y. Jiang, K. Huang, X. Lu, Opt. Express 22, 22847–22853 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Jiang, X. Zhu, W. Yu, H. Shao, W. Zheng, X. Lu, Opt. Express 23, 29834–29841 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Zhang, J. He, IEEE Photon. J. 9, 6500510 (2017)Google Scholar
  43. 43.
    Y. Jiang, S. Zhao, W. Yu, X. Zhu, J. Opt. Soc. Am. A 35, 890–894 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, Jpn. J. Appl.Phys. 41, L1232–L1233 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Z.X. Fang, Y.X. Ren, L. Gong, P. Vaveliuk, Y. Chen, R.D. Lu, J. Appl. Phys. 118, 203102 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    O. Mendoza-Yero, G. Minguez-Vega, J. Lancis, Opt. Lett. 39, 1740–1743 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingli Sun
    • 1
  • Kaikai Huang
    • 1
  • Yong Zha
    • 1
  • Huizhu Hu
    • 2
  • Nan Li
    • 2
  • Xian Zhang
    • 3
  • Bocheng Zhu
    • 4
  • Xuanhui Lu
    • 1
  1. 1.Physics DepartmentZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhouChina
  3. 3.Institutes of Advanced TechnologyZhejiang UniversityHangzhouChina
  4. 4.School of Electronics Engineering and Computing SciencePeking UniversityBeijingChina

Personalised recommendations