Applied Physics B

, 124:231 | Cite as

Numerical study of orbital angular momentum-entanglement in turbulence with adaptive optics system compensation

  • Huimin MaEmail author
  • Yan Qiao
  • Haiqiu Liu
  • Chunshan Shen


While the entangled orbital angular momentum (OAM) photons propagate through the turbulent atmosphere, the OAM entanglement is decoherent. Adaptive optics (AO) system is an effective technique to mitigate wavefront distortion induced by atmospheric turbulence. In this paper, we investigate the performance of the system when the entangled OAM photons propagate though atmospheric turbulence with AO system compensation. The influence of reconstruction algorithm and spatial bandwidth of corrector is analyzed. The results show that branch-point (BP) algorithm has better compensation performance when Rytov number > 0.2 than the least mean square error (LS) algorithm. High spatial bandwidth has better compensation performance.



This work was supported by Anhui Natural Science Foundation (Grant no. 1808085QF218) and the National Natural Science Foundation of China (Grant no. 61805001).


  1. 1.
    E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. CambridgePhilos. Soc. 31, 555–563 (1935)Google Scholar
  2. 2.
    K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, R. Blatt, Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Experimental one-way quantum computing. Nature 434, 169–176 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zenlinger, Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of angular momentum states of photons. Nature 412, 313–316 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    N.D. Leonhard, V.N. Shatokhin, A. Buchleitner, Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, A. Forbes, Orbital angular momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A.H. Ibrahim, F.S. Roux, T. Konrad, Parameter dependence in the atmospheric decoherence of modally entangled photon pairs. Phys. Rev. A 90, 052115 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    F.S. Roux, Infinitesimal propagation equation for decoherence of an OAM entangled biphoton in atmospheric turbulence. Phys. Rev. A 83, 053822 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J.R.G. Alonso, T.A. Brun, Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Smith, M.G. Raymer, Two photon wave mechanics. Phys. Rev. A 74, 062104 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Cunha Pereira, L.A.P. Filpi, C.H. Monken, Cancellation of atmospheric turbulence effects in entangled two-photon beams. Phys. Rev. A 88, 053836 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    R.K. Tyson, Bit-error rate for free-space adaptive optics laser communications. J. Opt. Soc. Am. A 19, 753–758 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    T. Berkefeld, D. Soltau, Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1 m Telescope of the ESA Optical Ground Station, Tenerife, Spain,”. Proc. of SPIE, 7736, 146 (2010)Google Scholar
  16. 16.
    D.L. Fried, J.F. Belsher, Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging. J. Opt. Soc. Am. A 11, 277–287 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    F. Merkel, P. Kern, P. Léna, F. Rigaut, J.C. Fontanella, G. Rousset, C. Boyer, J.P. Gaffard, P. Jagourel, Successful tests of adaptive optics. The Messenger 58, 1 (1989)ADSGoogle Scholar
  18. 18.
    S. Esposito, A. Riccardi, L. Fini, A.T. Puglisi, E. Pinna, M. Xompero, R. Briguglio, F. Quir´os-Pacheco, P. Stefanini, J.C. Guerra, L. Busoni, A. Tozzi, F. Pieralli, G. Agapito, G. Brusa-Zappellini, R. Demers, J. Brynnel, C. Arcidiacono, P. Salinari, First light AO (FLAO) system for LBT: final integration, acceptance test in Europe, and preliminary on-sky commissioning results. Proc. of SPIE, 7736, 773609 (2010)Google Scholar
  19. 19.
    Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M.P.J. Lavery, B.I. Erkmen, S. Dolinar, M. Tur, M.A. Neifeld, M.J. Padgett, R.W. Boyd, J.H. Shapiro, A.E. Willner, Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. Opt. Lett. 39, 2845–2848 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    B. Rodenburg, M. Mirhosseini, M. Malik, O.S. Magaña- Loaiza, M. Yanakas, L. Maher, N. Steinhoff, G. Tyler, R.W. Boyd, Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication. New J. Phys. 16, 033020 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M.P.J. Lavery, M. Tur, M. Neifeld, R.W. Boyd, J.H. Shapiro, A.E. Willner, Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica 1, 376 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Ren, G. Xie, H. Huang, L. Li, N. Ahmed, Y. Yan, M.P.J. Lavery, R. Bock, M. Tur, M.A. Neifeld, R.W. Boyd, J.H. Shapiro, A.E. Willner, Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength. Opt. Lett. 40, 2249 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Roggemann, A.C. Koivunen, Wave-front sensing and deformable-mirror control in strong scintillation. J. Opt. Soc. Am. A 17, 911–919 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    R.H. Hudgin, Optimal wave-front estimation. J. Opt. Soc. Am. 67(3), 378–382 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    D.C. Ghiglia, M.D. Pritt, Two-dimensional phase unwrapping theory, algorithms, and software. Wiley, Hoboken (1998)zbMATHGoogle Scholar
  26. 26.
    D.L. Fried, Branch point problem in adaptive optics. J. Opt. Soc. Am. A 15, 2759 (1998)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Eo. Le Bigot, W.J., Wild, and E. J. Kibblewhite. “Reconstruction of discontinuous light-phase functions. Opt. Lett. 23, 10–12 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    T.M. Venema, J.D. Schmidt, Optical phase unwrapping in the presence of branch points. Opitcs Express 16, 6985–6998 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    X. Yan, P.F. Zhang, J.H. Zhang, H.Q. Chun, C.Y. Fan, Decoherence of orbital angular momentum tangled photons in non-Kolmogorov turbulence. J. Opt. Soc. Am. A 33, 1831 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Barchers, D.L. Fried, D.J. Link, Evaluation of the performance of a shearing interferometer in strong scintillation in the absence of additive measurement noise. 41, 3674–3684 (2002)Google Scholar
  32. 32.
    J.D. Barchers, D.L. Fried, D.J. Link, Evaluation of the performance of Hartmann sensors in strong scintillation. Appl. Opt. 41, 1012–1021 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    D.H. Bailey, P.N. Swarztrauber, The fractional Fourier transform and applications. SIAM Rev. 33, 389–404 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Paterson, Atmosphere turbulence and orbital angular momentum of single photons for optical communication. Phy. Rev. Lett. 94, 153901–153904 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information and ComputerAnhui Agricultural UniversityHefeiChina

Personalised recommendations