Advertisement

Applied Physics B

, 124:240 | Cite as

Birefringence measurement of biological tissue based on polarization-sensitive digital holographic microscopy

  • Jiawen Wang
  • Liang Dong
  • Haige Chen
  • Sujuan Huang
Article
  • 51 Downloads

Abstract

We present a polarization-sensitive digital holography to measure the birefringence of biological tissues with complex structures. The birefringence measurement system is established by incorporating the modified Mach–Zehnder interferometer and lab-developed software. Normal and cancerous bladder tissue samples are measured by using the proposed experimental system. The polarization-dependent phase-shifted holograms are recorded by rotating the polarizer. Moreover, the hybrid reconstruction and least-square unwrapping algorithms are used to extract phase information of biological tissues at different polarization states. The birefringence of tissue is obtained from the above-phase distributions. The results show that polarization sensitivity exists in the normal bladder tissue and cancerous bladder tissue, and the median birefringence value of the cancerous tissue is significantly higher than that of the normal tissue. These results will provide reference for pathological research and clinic diagnoses.

Notes

Acknowledgements

Research was supported by National Natural Science Foundation of China (No. 61475098), Shanghai Natural Science Fund Exploration Project (No. 17ZR1447400), and Shanghai Jiao Tong University Cross Fund of Medicine and Technology (YG2016QN56).

References

  1. 1.
    L. Chin, X. Yang, R.A. McLaughlin et al. Birefringence imaging for optical sensing of tissue damage [C]. In: IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, IEEE, pp. 45–48 (2013)Google Scholar
  2. 2.
    H.W. Chen, C.L. Huang, Y.L. Lo et al., Analysis of optically anisotropic properties of biological tissues under stretching based on differential Mueller matrix formalism [J]. J. Biomed. Opt. 22(3), 35006 (2017)CrossRefGoogle Scholar
  3. 3.
    W. Gao, Changes of polarization of light beams on propagation through tissue [J]. Opt. Commun. 260(2), 749–754 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Chen, Q. Yan, H. Yao, Birefringence and polarization mode dispersion in graded-core stress-applied polarization-maintaining fibers [J]. Appl. Phys. B 48(3), 225–229 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko et al., Polarization singularities of biological tissues images [J]. J. Biomed. Opt. 11(5), 054030 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    P.S. Jouk, A. Mourad, V. Milisic et al., Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life [J]. Eur. J. Cardio-thoracic Surg. 31(5), 915–921 (2007)CrossRefGoogle Scholar
  7. 7.
    F. Massoumian, R. Juskaitis, M.A.A. Neil, T.Wilson, Quantitative polarized light microscopy [J]. J. Microsc. 209(1), 13–22 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.C. van Turnhout, S. Kranenbarg, J.L. van Leeuwen, Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy [J]. J. Biomed. Opt. 14(5), 054018 (2009)CrossRefGoogle Scholar
  9. 9.
    J.C.M. Low, T.J. Ober, G.H. Mckinley et al., Quantitative polarized light microscopy of human cochlear sections[J]. Biomed. Opt. Exp. 6(2), 599–606 (2015)CrossRefGoogle Scholar
  10. 10.
    N. Ghosh, I.A. Vitkin, Tissue polarimetry: concepts, challenges, applications, and outlook [J]. J. Biomed. Opt. 16(11), 110801 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M.R. Antonelli, A. Pierangelo, T. Novikova et al., Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data [J]. Opt. Express 18(10), 10200–10208 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M.K. Swami, S. Manhas, P. Buddhiwant et al., Polar decomposition of 3 × 3 Mueller matrix: a tool for quantitative tissue polarimetry [J]. Opt. Express 14(20), 9324 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Chipman, S.Y. Lu, Interpretation of Mueller matrices based on polar decomposition[J]. J. Opt. Soc. Am. A 13(5), 1106–1113 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    S. Jiao, G. Yao, L.V. Wang, Depth-resolved two-dimensional stokes vectors of backscattered light and mueller matrices of biological tissue measured with optical coherence tomography [J]. Appl. Opt. 39(34), 6318–6324 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    H. He, C. He, J. Chang et al., Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging [J]. J. Biophotonics 10(5), 664–673 (2017)CrossRefGoogle Scholar
  16. 16.
    C.L. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K.A. Nugent, L.M. Delbridge, Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells [J]. Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Majeed, S. Sridharan, M. Mir et al., Quantitative phase imaging for medical diagnosis [J]. J. Biophoton., 10(2) (2017)Google Scholar
  18. 18.
    S. Wang, L. Xue, H. Li et al., Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer [J]. Appl. Phys. B 116(1), 235–239 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Chipman, S.Y. Lu, Homogeneous and inhomogeneous Jones matrices [J]. J. Opt. Soc. Am. A 11(2), 766–773 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Wang, L.J. Millet, M.U. Gillette, G. Popescu, Jones phase microscopy of transparent and anisotropic samples [J]. Opt. Lett. 33, 1270–1272 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Colomb, F. Dürr, E. Cuche, P. Marquet, H.G. Limberger, R.P. Salathé, C. Depeursinge, Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements [J]. Appl. Opt. 44(21), 4461–4469 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    T. Todorov, L. Nikolova, N. Tomova et al., Polarization holography for measuring photoinduced optical anisotropy [J]. Appl. Phys. B 32(2), 93–95 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    S. Kosmeier, P. Langehanenberg, G.V. Bally et al., Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length [J]. Appl. Phys. B 106(1), 107–115 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Kim, J. Jeong, J. Jang, M.W. Kim, Y. Park, Polarization holographic microscopy for extracting spatiotemporally resolved Jones matrix [J]. Opt. Express 20, 9948–9955 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sarkar, K. Bhattacharya, Polarization phase shifting in digital holographic microscopy [J]. Optik Int. J. Light Electron Opt. 125(1), 285–288 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Guo, B. Yao, P. Gao et al., Off-axis digital holographic microscopy with LED illumination based on polarization filtering [J]. Appl. Opt. 52(34), 8233–8238 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Lin, L. Dong, H. Chen et al., Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm [J]. Biomed. Optics Exp. 9(1), 1 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    W.A. Ramadan, H.H. Wahba, M.A.S. El-Din, Two-dimensional refractive index and birefringence profiles of a graded index bent optical fibre [J]. Opt. Fiber Technol. 36, 115–124 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S. Aknoun, P. Bon, J. Savatier et al., Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry [J]. Opt. Express 23(12), 16383–16406 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data ScienceShanghai UniversityShanghaiChina
  2. 2.Department of Urology, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations