Applied Physics B

, 124:227 | Cite as

Plasmonic enhancement of random lasing from dye-doped polymer with dispersed Au nanoparticles

  • Hao Lü
  • Yanyan Lan
  • Qiuling Zhao
  • Xia WangEmail author
  • Shuaiyi Zhang
  • Lihua Teng
  • Wing Yim Tam


We report plasmonic enhanced random lasing from dye-doped polymer with dispersed Au nanoparticles (DP@Au NPs). The Au nanoparticles, fabricated by simple and convenient sputtering and thermal annealing processes, are employed as scatterers in a DCJTB-doped PMMA film. Random-arranged and nearly spherical nano-Au particles are fabricated by optimizing the sputtering time and annealing temperature. Multiple scattering coming from particles plays a fundamental role in random lasing emissions. We demonstrate low-threshold random lasing and also the polarization dependence by observing emission as a function of pump beam power and detection polarization in DP@Au NP system. Our findings provide an effective approach for random lasing and could pave a way for the fabrication of efficient random lasing devices.



We acknowledge the International Cooperation Program for Excellent Lectures of 2017 by Shandong Province Education Department, the National Natural Science Foundation of China (Grant numbers 11874232, 11504194), the Key research and development plan in Shandong Province (Grant number 2018GGX101008), the Natural Science Foundation of Shandong Province, China (Grant number ZR2014FP012), and the Doctoral Found of QUST (Grant number 010022936).


  1. 1.
    N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Laser action in strongly scattering media. Nature 368(6470), 436 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photon. 6(6), 355–359 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, L. Wang, Random laser based on wave guided plasmonic gain channels. Nano Lett. 11, 4295 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, J. Shi, Random lasing with a high quality factor over the whole visible range based on cascade energy transfer. Adv. Opt. Mater. 2, 88–93 (2014)CrossRefGoogle Scholar
  5. 5.
    O. Popov, A. Zilbershtein, D. Davidov, Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 89(19), 191116 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D. He, W. Bao, L. Long, P. Zhang, M. Jiang, D. Zhang, Random lasing from dye-Ag nanoparticles in polymer films: improved lasing performance by localized surface plasmon resonance. Opt. Laser Technol. 91, 193–196 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Wang, X. Meng, S.H. Choi, K. Sebastian, L.K. Young, C. Hui, M.S. Vladimir, B. Alexandra, Controlling random lasing with three-dimensional plasmonic nanorod metamaterials. Nano Lett. 16(4), 2471–2477 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. Shalaev, O. Akkus, Y. Kim, Random lasing in bone tissue. Opt. Lett. 35, 1425–1427 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    B. Redding, M.A. Choma, H. Cao, Spatial coherence of random laser emission. Opt. Lett. 36(17), 3404–3406 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Electrically pump ZnO film ultraviolet random lasers on silicon substrate. Appl. Phys. Lett. 91(25), 251109 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    X. Meng, K. Fujita, Y. Zong, S. Murai, K. Tanaka, Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Appl. Phys. Lett. 92(20), 201112 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, T.A. Klar, Gold nanostars for random lasing enhancement. Opt. Express 23(12), 15152–15159 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    S. Xu, Y. Cao, J. Zhou, X. Wang, X. Wang, W. Xu, Plasmonic enhancement of fluorescence on silver nanoparticle films. Nanotechnology 22(21), 275715 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ning, H. Dong, N. Zhang, J. Zhao, L. Ding, Plasmonic enhancement of random lasing from dye-doped polymer film by bristled Ag/TiO2 composite nanowires. Opt. Mater. Express 6(12), 3725–3732 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wan, W. An, L. Deng, Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes. Sci. Rep. 7(1), 1–7 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    H.L. Huang, C.F. Chou, S.H. Shiao, Y.C. Liu, J.J. Huang, S.U. Jen, H.P. Chiang, Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays. Opt. Express 21(105), A901–A908 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Aslan, Z. Leonenko, J.R. Lakowicz, C.D. Geddes, Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B 109(8), 3157–3162 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Anna, S. Petr, K. Irena, M. Petr, M. Anna, V. Švorčík, Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique. Nanoscale. Res. Lett. 8(1), 1–3 (2013)CrossRefGoogle Scholar
  19. 19.
    B.M. Reinhard, M. Siu, H. Agarwal, A.P. Alivisatos, J. Liphardt, Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 5(11), 2246–2252 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, X. Zhang, A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale 7(6), 2235–2240 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    L. Long, D. He, W. Bao, M. Feng, P. Zhang, D. Zhang, S. Chen, Localized surface plasmon resonance improved lasing performance of Ag nanoparticles/organic dye random laser. J. Alloy. Compd. 693, 876–881 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Ning, Z. Wu, H. Dong, F. Yuan, J. Xi, L. Ma, B. Jiao, X. Hou, Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods. Opt. Lett. 40(6), 990–993 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    C. Rohith, Z. Wang, X. Meng, S.I. Azzam, M.Y. Shalaginov, A. Lagutchev, Y.L. Kim, A. Wei, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Lasing action with gold nanorod hyperbolic metamaterials. ACS Photon. 4(3), 674–680 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Meng, A.V. Kildishev, K. Fujita, K. Tanaka, V.M. Shalaev, Wavelength-tunable spasing in the visible. Nano Lett. 13(9), 4106–4112 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan, C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers. Nat. Photon. 7(12), 963–968 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    G. Strangi, S. Ferjani, V. Barna, A.D. Luca, C. Versace, N. Scaramuzza, R. Bartolino, Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. express 14(17), 7737–7744 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70(17), 2230–2232 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, R.P.H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73(25), 3656–3658 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P. Chang, Random laser action in semiconductor powder. Phys. Rev. Lett. 82(11), 2278–2281 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    E. Heydari, R. Flehr, J. Stumpe, Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing. Appl. Phys. Lett. 102(13), 133110 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    N. Shuya, W. Zhaoxin, D. Hua, Y. Fang, X. Jun, M. Lin, J. Bo, H. Xun, Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods. Opt. Lett. 40(6), 990–993 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsQingdao University of Science and TechnologyQingdaoChina
  2. 2.Shandong Advanced Optoelectronic Materials and Technologies Engineering LaboratoryQingdaoChina
  3. 3.Physics DepartmentThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations