Applied Physics B

, 124:228 | Cite as

A vibration-insensitive-cavity design holds impact of higher than \(100g\)

  • Bin-Kai Tao
  • Qun-Feng ChenEmail author


In this paper, we report a robust and vibration insensitive optical cavity design. The robustness of the supporting structure was tested by dropping an aluminum and a ULE cavity model mounted in the supporting frame onto an optical table from a height of about 250 and 20 mm repetitively. The impact acceleration on hitting the table was estimated to be higher than \(100g\). The success of the test demonstrated that the design was very robust. Meanwhile, the vibration sensitivities of the cavity in three orthogonal directions were measured to be \(0.8\times 10^{-10}/g\), \(2.5\times 10^{-10}/g\) and \(1.5\times 10^{-10}/g\), respectively. The robustness and low vibration sensitivity suggested that the design was suitable for transportable system and might be a good candidate for space applications.


Optical cavity Ultra-stable laser Transportable Space 



We acknowledge Y. Wang, H.Y. Sun, and Y.Q. Xu for their fruitful helps and discussions. This work was supported by the National Natural Science Foundation of China, Grant No. 91636110, the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB21010300, National Key R&D Program of China (2017YFA0304403), and the Chinese Academy of Sciences.


  1. 1.
    Ch. Salomon, D. Hils, J.L. Hall, J. Opt. Soc. Am. B 5(8), 1576–1587 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Stefan Seel, Rafael Storz, Giuseppe Ruoso, Jürgen Mlynek, Stephan Schiller, Phys. Rev. Lett. 78(25), 4741–4744 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Sebastian Häfner, Stephan Falke, Christian Grebing, Stefan Vogt, Thomas Legero, Mikko Merimaa, Christian Lisdat, Uwe Sterr, Opt. Lett. 40(9), 2112–2115 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J.M. Robinson, J. Ye, F. Riehle, U. Sterr, Phys. Rev. Lett. 118(26), 263202 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    B.J. Bloom, T.L. Nicholson, J.R. Williams, S.L. Campbell, M. Bishof, X. Zhang, W. Zhang, S.L. Bromley, J. Ye, Nature 506(7486), 71–75 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Andrew D. Ludlow, Martin M. Boyd, Jun Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87(2), 637–701 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    N. Huntemann, C. Sanner, B. Lipphardt, Chr Tamm, E. Peik, Phys. Rev. Lett. 116(6), 063001 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, K. Gao, Phys. Rev. Lett. 116(1), 013001 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S.L. Campbell, R.B. Hutson, G.E. Marti, A. Goban, N. Darkwah Oppong, R.L. McNally, L. Sonderhouse, J.M. Robinson, W. Zhang, B.J. Bloom, J. Ye, Science 358(6359), 90–94 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Ch. Eisele, AYu. Nevsky, S. Schiller, Phys. Rev. Lett. 103(9), 090401 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk, A. Peters, Phys. Rev. D 80(10), 105011 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Chen, E. Magoulakis, S. Schiller, Phys. Rev. D 93(2), 022003 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, Phys. Rev. Lett. 117(6), 061301 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Benjamin M. Roberts, Geoffrey Blewitt, Conner Dailey, Mac Murphy, Maxim Pospelov, Alex Rollings, Jeff Sherman, Wyatt Williams, Andrei Derevianko, Nature Comm. 8(1), 1195 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Rana X. Adhikari, Rev. Mod. Phys. 86(1), 121–151 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett., 116(6), 061102 (2016)Google Scholar
  17. 17.
    S.B. Koller, J. Grotti, St Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, Ch. Lisdat, Phys. Rev. Lett. 118(7), 073601 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, X. Huang, Appl. Phys. B 123(4), 112 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    SOC2-Towards Neutral-atom Space Optical Clocks.
  20. 20.
    LISA-Laser Interferometer Space Antenna-NASA Home Page.
  21. 21.
    Jun Luo, Li-Sheng Chen, Hui-Zong Duan et al., Class. Quan. Grav. 33(3), 035010 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Lisheng Chen, John L. Hall, Jun Ye, Tao Yang, Erjun Zang, Tianchu Li, Phys. Rev. A 74(5), 053801 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    J. Millo, D.V. Magalhães, C. Mandache, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79(5), 053829 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Stephen Webster, Patrick Gill, Opt. Lett. 36(18), 3572–3574 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    David R. Leibrandt, Michael J. Thorpe, Mark Notcutt, Robert E. Drullinger, Till Rosenband, James C. Bergquist, Opt. Express 19(4), 3471–3482 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, S. Schiller, Appl. Phys. B 104(4), 741 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Josue Davila-Rodriguez, Frederick N. Baynes, Andrew D. Ludlow, Tara M. Fortier, H. Leopardi, Scott A. Diddams, F. Quinlan, Opt. Lett. 42(7), 1277–1280 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Alexandre Didier, Jacques Millo, Baptiste Marechal, Cyrus Rocher, Enrico Rubiola, Roméo Lecomte, Morvan Ouisse, Jérôme Delporte, Clément Lacroûte, Yann Kersalé, Appl. Opt. 57(22), 6470–6473 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, Opt. Express 20, 25409 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Qun-Feng Chen, Alexander Nevsky, Marco Cardace, Stephan Schiller, Thomas Legero, Sebastian Häfner, Andre Uhde, Uwe Sterr, Rev. Sci. Instrum. 85(11), 113107 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Thomas Legero, Thomas Kessler, Uwe Sterr, J. Opt. Soc. Am. B 27(5), 914–919 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    The robustness of the contacting between the cavity mirrors and the spacer was not discussed here, because there were already many discussion on the robustness of glass bondings for space applications, e.g. Hydroxide-catalysis bondingGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations