Advertisement

Applied Physics B

, 124:238 | Cite as

Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning

  • Xianjiang Zeng
  • Wenping Guo
  • Kecheng Yang
  • Min Xia
Article
  • 38 Downloads

Abstract

To address the problem in which the signal-to-noise ratio of a raw atmospheric lidar signal decreases rapidly as the range increases, which has a tremendous effect on the accuracy and the effective range of lidar retrieval, many de-noising algorithms have been proposed. Among these methods, those based on the ensemble Kalman Filter (EnKF) exhibit good performance. EnKF-based methods can simultaneously denoise lidar signals and yield accurate retrieval results. However, due to poor forecasting in the EnKF step, biases exist in the results of these methods. In this study, a modified lidar inversion method was proposed for horizontal aerosol characteristic retrieval, which combines the joint retrieval method and Gaussian processing machine learning. This method compensates for the poor forecasting in the EnKF step in the joint retrieval method through the Gaussian processing machine learning algorithm, which can reduce the biases in the retrieval results. The modified lidar inversion method was applied to both simulated and real lidar signals, and the results show that the modified lidar inversion method is effective and practical in aerosol extinction characteristics’ analysis.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 41406108 and 41349901).

References

  1. 1.
    Prokes, Opt. Eng. 48, 635 (2009)CrossRefGoogle Scholar
  2. 2.
    W. Krichbaumer, C. Werner, Appl. Phys. B 59, 517 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    F. Mao, W. Wang, Q. Min, W. Gong, Opt. Express 23, 604 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    X. Wu, H. Wang, B. Song, Appl. Opt. 54, 1015 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    R.T.H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    G.J. Kunz, G. De Leeuw, Applied optics 32, 3249 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    F. Rocadenbosch, C. Soriano, A. Comerón, J. Baldasano, Appl. Opt. 38, 3175 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    F. Rocadenbosch, A. Comerón, L. Albiol, Appl. Opt. 39, 6049 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Klett, Appl. Opt. 20, 211 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    F.G. Fernald, Appl. Opt. 23, 652 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M. Feiyue, G. Wei, M. Yingying, Opt. Lett. 37, 617 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    F. Mao, J. Li, C. Li, G. Wei, Q. Min, W. Wang, Opt. Express 23, A1589 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H.-T. Fang, D.-S. Huang, Y.-H. Wu, Appl. Opt. 44, 1077 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    W. Gong, J. Li, F. Mao, J. Zhang, Chin. Opt. Lett. 9, 050101 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Mao, W. Gong, C. Li, Opt. Express 21, 8286 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    X. Zeng, M. Xia, Y. Ge, W. Guo, K. Yang, Atmos. Environ. 177, 18 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    C. Li, Z. Pan, F. Mao, W. Gong, S. Chen, Q. Min, Opt. Express 23, 26509 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    P.B. Wigley, P.J. Everitt, dH.A. Van, J.W. Bastian, M.A. Sooriyabandara, G.D. Mcdonald, K.S. Hardman, C.D. Quinlivan, P. Manju, C.C. Kuhn, Sci. Rep. 6, 25890 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S.T. Ounpraseuth, Int. J. Neural Syst. 14, 69 (2004)CrossRefGoogle Scholar
  20. 20.
    D. Nguyen-Tuong, J. Peters, in Local Gaussian process Regression for Real-Time Model-Based Robot control, 2008, p. 380Google Scholar
  21. 21.
    Y. Bazi, F. Melgani, IEEE Trans. Geosci. Remote Sens. 48, 186 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    K. Chen, P. Jian, Z. Zhou, J.E. Guo, D. Zhang, IEEE Geosci. Remote Sens. Lett 10, 1285 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M.Y. Yang, W. Liao, B. Rosenhahn, Z. Zhang, in Hyperspectral Image Classification Using Gaussian Process Models, 2015, p. 1717Google Scholar
  24. 24.
    Troncoso, J.C. Riquelme, Neurocomputing 167, 24 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.Q. Liu, L.I. Peng-Cheng, X.W. Chen, B.M. Zhang, H.T. Guo, Opt. Precis. Eng. 24, 210 (2016)CrossRefGoogle Scholar
  26. 26.
    V.A. Kovalev, W.E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley, Hoboken, 2005)Google Scholar
  27. 27.
    F. Mao, W. Gong, T. Logan, Opt. Express 21, 26876 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Sasano, Appl. Opt. 35, 4941 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    U.S. Atmosphere, US Standard Atmosphere (National Oceanic and Atmospheric Administration, 1976)Google Scholar
  30. 30.
    G. Su, in Accelerating Particle Swarm Optimization Algorithms Using Gaussian Process Machine Learning, 2009, p. 174Google Scholar
  31. 31.
    G. Su, B. Yu, Y. Xiao, L. Yan, Adv. Struct. Eng. 17, 1257 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xianjiang Zeng
    • 1
    • 2
  • Wenping Guo
    • 1
  • Kecheng Yang
    • 1
  • Min Xia
    • 1
  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Huazhong Institute of Electro-opticsWuhan National Research Center for OptoelectronicsWuhanChina

Personalised recommendations