Applied Physics B

, 124:224 | Cite as

Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure

  • Li Shao-he
  • Li Jiu-shengEmail author


A novel terahertz wave modulator based on CsPbBr3 perovskite quantum dots heterostructure is proposed. An external modulated 450 nm pumping laser is utilized to generate photoexcited free carriers at the CsPbBr3 perovskite quantum dots heterostructure medium. We measured an amplitude modulation of the terahertz transmission in the frequency range from 0.23 to 0.35 THz with various laser intensity irradiances. In addition, dynamic amplitude modulation at 0.27 THz carrier wave show that the modulator provides a modulation speed of 2.5 MHz at a external pump laser irradiance of 2.0 W/cm2. Our CsPbBr3 perovskite quantum dots heterostructure can high speed modulation and can be used for terahertz modulation in addition to photovoltaics application.



The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant nos. 61871355, 61831012).


  1. 1.
    H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nat. Photon. 3, 148 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    H.T. Chen, S. Palit, T. Tyler, C.M. Bingham, J.M.O. Zide, J.F. O’Hara, D.R. Smith, A.C. Gossard, R.D. Averitt, W.J. Padilla, N.M. Jokerst, A.J. Taylor, Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl. Phys. Lett. 93, 091117 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Li, J. Yao, Novel optical controllable terahertz wave switch. Opt. Commun. 281, 5697–5700 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Savo, D. Shrekenhamer, W.J. Padilla, Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2, 275–279 (2014)CrossRefGoogle Scholar
  7. 7.
    D.Shrekenhamer, S.Rout, A.C., C. Strikwerda, R.D. Bingham, S.Sonkusale Averitt, W.J. Padilla, High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt. Express 19, 9968–9975 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    L. Fekete, F. Kadlec, P. Kužel, H. Neˇmec, Ultrafast opto-terahertz photonic crystal modulator. Opt. Lett. 32, 680 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics 2, 295–298 (2008)CrossRefGoogle Scholar
  10. 10.
    H.T. Chen, H. Yang, R. Singh, J.F. O’Hara, A.K. Azad, S.A. Trugman, Q.X. Jia, A.J. Taylor, Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N.H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, C.M. Soukoulis, Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B 79, 161102(R) (2009)ADSCrossRefGoogle Scholar
  12. 12.
    B.S. Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W. Hwang, D. Jena, L. Liu, H. Xing, Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3, 780–786 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Degl’Innocenti, D.S. Jessop, Y.D. Shah, J. Sibik, J.A. Zeitler, P.R. Kidambi, S. Hofmann, H.E. Beere, D.A. Ritchie, Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano 8(3), 2548–2554 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Mittendorff, S. Li, T.E. Murphy, Graphene-based waveguide-Integrated terahertz modulator. ACS Photonics 4(2), 316–321 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, Z. Fan, Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications. J. Appl. Phys. 114, 113509 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    T. Matsui, R. Takagi, K. Takano, M. Hangyo, Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials. Opt. Lett. 38, 4632–4635 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, J. Shen, Conjugated polymer based active electric-controlled terahertz device. Appl. Phys. Lett. 108, 103301 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    H.K. Yoo, S.G. Lee, C. Kang, C.S. Kee, J.W. Lee, Terahertz modulation on angle-dependent photoexcitation in organic/inorganic hybrid structures. Appl. Phys. Lett. 103, 151116 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    C.L. Li, Z.G. Zang, C. Han, Z.P. Hu, X.S. Tang, J. Du, Y.X. Leng, K. Sun, Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017)CrossRefGoogle Scholar
  20. 20.
    C.L. Li, Z.G. Zang, W.W. Chen, Z.P. Hu, X.S. Tang, W. Hu, K. Sun, X.M. Liu, W.M. Chen, Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Wen, W. Tian, Q. Mao, Z. Chen, W. Liu, Q. Yang, M. Sanderson, H. Zhang, Graphene based all-optical spatial terahertz modulator. Sci. Rep. 4, 7409 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. Kelly, D. Jena, L. Liu, H.G. Xing, Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12, 4518–4522 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Unlu, M. Hashemi, C. Berry, S. Li, S. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)CrossRefGoogle Scholar
  24. 24.
    P.Q. Liu, I.J. Luxmoore, S.A. Mikhailov, N.A. Savostianova, F. Valmorra, J. Faist, G.R. Nash, Highly tunable hybrid metamaterial employing split-ring resonators strongly coupled to graphene surface plasmons. Nat. Commun. 6, 8969 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color tunable colloidal CH3NH3PbX3(X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Yoon, H. Kang, S. Lee, J. Oh, H. Yang, Y. Do, Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 8, 18189–18200 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Lee, J. Kwon, E. Hwang, C.H. Ra, W.J. Yoo, J.H. Ahn, J.H. Park, J.H. Cho, High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015)CrossRefGoogle Scholar
  31. 31.
    H.R. Xia, J. Li, W.T. Sun, L.M. Peng, Organohalide lead perovskite based photodetectors with much enhanced performance. Chem. Commun. 50, 13695–13697 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith, Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    S. Veldhuis, P. Boix, N. Yantara, M. Li, T. Sum, N. Mathews, S. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016)CrossRefGoogle Scholar
  34. 34.
    N. Jeon, J. Noh, W. Yang, Y. Kim, S. Ryu, J. Seo, S. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Solar cells. Electron hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z.V. Vardeny, A. Nahata, Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites. Nat. Commun. 8, 1328 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Noman, J.S. Owen, O. Yaffe, B.J. Kudisch, X.Y. Zhu, Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015)CrossRefGoogle Scholar
  39. 39.
    D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Q. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016)CrossRefGoogle Scholar
  42. 42.
    D. Zhang, S. Eaton, Y. Yu, L. Dou, P. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, Light absorption coefficient of CsPbBr3 Perovskite nanocrystals. J. Phys. Chem. Lett. 9(11), 3093–3097 (2018)CrossRefGoogle Scholar
  44. 44.
    A. Singh, A. Uddin, T. Sudarshan, G. Koley, Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. Small 10(8), 1555–1565 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Ahn, H. Park, M.A. Mastro, J.K. Hite, C.R. Eddy Jr., J. Kim, Nanostructured n-ZnO/thin film p-silicon heterojunction light-emitting diodes. Opt. Express 19(27), 26006–26010 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    M. Liang, Z.R. Wu, L.W. Chen, L. Song, P. Ajayan, H. Xin, Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films. IEEE Trans. Microw. Theory Tech. 59, 2719–2725 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for THz ResearchChina Jiliang UniversityHangzhouChina

Personalised recommendations