Applied Physics B

, 124:225 | Cite as

Using laser-induced breakdown spectroscopy to monitor the surface hardness of titanium samples bombarded by carbon ions

  • A. H. GalmedEmail author
  • C. Steenkamp
  • I. Ahmed
  • A. du Plussis
  • H. von Bergmann
  • M. A. Harith
  • M. Maaza


On a long run, dominant extreme conditions in nuclear reactors lead to serious problems due to undesired changes in the physical properties of reactor inner walls. Exposure to high energetic ions is considered as a crucial affecting factor. Consequently, it is important to find a way to monitor the changes taking place. In this work laser-induced breakdown spectroscopy (LIBS) was used to monitor the changes in the surface hardness of the Ti samples after being bombarded with carbon ions with different doses. It has been found that bombarding of the titanium samples by carbon ions gives rise to a pronounced change in its physical properties, especially its surface hardness. LIBS measurements were successful in estimating the changes in samples’ surface hardness via monitoring the variations in the plasma excitation temperature (Te), and the obtained results were in good agreement with the values obtained conventionally for the measured surface hardness. Also, it was found that changing the Ti matrix by introducing a new element in the titanium samples material has a great influence on Te and consequently on the hardness measurements via LIBS.



The authors would like to thank Ms. Penny Louw for facilitating the Vickers tester in the center of Material Engineering in the University of Cape Town (UCT), Cape Town, South Africa. Also, authors would like to thank the SEM team at the University of Western Cape (UWC), Cape Town, South Africa.


  1. 1.
    R. Gregory, J.-O. Choppin, Liljenzin, Jan Rydberg, Radiochemistry and Nuclear Chemistry (Butterworth-Heinemann, USA, 2002)Google Scholar
  2. 2.
    R.A. Knief, Nuclear Energy Technology (McGraw-Hill, 1981)Google Scholar
  3. 3.
    S. Gary, Was, Ion beam modification of metals: compositional and microstructural changes. Prog. Surf. Sci. 32, 211–332 (1990)Google Scholar
  4. 4.
    X. Xiao, Q. Chen, H. Yang, H. Duan, J. Qu, A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 485, 80–89 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    X. Bai, S. Wu, P.K. Liaw, L. Shao, J. Gigax, Effect of heavy ion irradiation dosage on the hardness of SA508-IV reactor pressure vessel steel. Metals 25, 1–7 (2017)Google Scholar
  6. 6.
    H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation. J. Nucl. Mater. 455, 349–353 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A. Tripathi, D.K. Avasthi, S. Kumar, S. Mohapatra, A.I. Titov, P.A. Karaseov, M.V. Mishin, A.Ya. Vinogradov, Modification of properties of metal containing carbon films by swift heavy ion irradiation, in 10th International Vacuum Electron Sources Conference (IVESC), IEEE (2014)Google Scholar
  8. 8.
    R.A. Andrievski, Behavior of radiation defects in nanomaterials. Rev. Adv. Mater. Sci. 29, 54–67 (2011)Google Scholar
  9. 9.
    R.D. Pilkington, J.S. Astin, J.S. Cowpe, Application of laser induced breakdown spectroscopy for surface hardness measurements. Spectrosc. Eur. 27, 13–15 (2015)Google Scholar
  10. 10.
    R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, V. Spizzichino, Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative Analysis: a review. Spectrochim. Acta B 63, 1097–1108 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta B 57, 1115–1130 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Rezk, A.H. Galmed, M. Abdelkreem, N.A. AbdelGhany, M.A. Harith, Quantitative analysis of Cu and Co adsorbed on fish bones via laser induced breakdown spectroscopy. Opt. Laser Technol. 83, 131–139 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    G.S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T.M. Miano, M. Capitelli, Heavy Metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ. Res. 109, 413–420 (2009)CrossRefGoogle Scholar
  14. 14.
    A.H. Galmed, A.K. Kassem, H. Von Bergmann, M.A. Harith, A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface. Appl Phys B 102, 197–204 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Elhassan, A. Giakoumaki, D. Anglos, G.M. Ingo, L. Robbiola, M.A. Harith, Nanosecond, and femtosecond laser induced breakdown spectroscopic analysis of bonze alloys. Spectrochim. Acta B 63, 504–511 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    G. Galbacs, N. Jedlinszki, G. Cseh, Z. Galbacs, L. Túri, Accurate quantitative analysis of gold alloys using multi-pulse laser induced breakdown spectroscopy and a correlation-based calibration method. Spectrochim. Acta B 63, 591–597 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    A. Giakoumaki, K. Melessanaki, D. Anglos, Laser-induced breakdown spectroscopy (LIBS) in archaeological science applications and prospects. Anal. Bioanal. Chem. 387, 749–760 (2007)CrossRefGoogle Scholar
  18. 18.
    M.E. Asgill, D.W. Hahn, Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: temporal considerations. Spectrochim. Acta B 64, 1153–1158 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tsuyuki, S. Miura, N. Idris, K. Hendrik, T. Jie, K. Kagawa, Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma. Appl. Spectrosc. 60, 61–64 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim. Acta B 62, 1343–1347 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Abdel-Salam, M. Abdelhamid, S.M. Khalil, M.A. Harith, LIBS new application: determination of metallic alloys surface hardness, in Proceedings of the 7th International Conference on Laser Applications (ICLA’09), pp. 49–52, May 2009Google Scholar
  22. 22.
    J.S. Cowpe, R.D. Moorehead, D. Moser, J.S. Astin, S. Karthikeyan, S.H. Kilcoyne, G. Crofts, R.D. Pilkington, Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy. Spectrochim. Acta B 66, 290–294 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A. Timur, A.M. Labutin, N. Popov, Vasily, N.B. Lednev, Zorov, Correlation between properties of a solid sample and laser-induced plasma parameters. Spectrochim. Acta Part B 64, 938–949 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Messaoud Aberkane, A. Bendib, K. Yahiaoui, S. Boudjemai, S. Abdelli-Messaci, T. Kerdja, S.E. Amara, M.A. Harith, Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique. Appl. Surf. Sci. 301, 225–229 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    O.M. Khalil, I. Mingareev, T. Bonhoff, A.F. El-Sherif, M.C. Richardson, M.A. Harith, Studying the effect of zeolite inclusion in aluminum alloy on measurement of its surface hardness using laser induced breakdown spectroscopy technique. Opt. Eng. 53, 0141061–0141065 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Jianwei Huang, S. Dong, W. Lu, J. Li, C. Lu, J.H. Liu, Yoo, Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR). J. Anal. At. Spectrom. 33, 720–729 (2018)CrossRefGoogle Scholar
  27. 27.
    M.A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, M.A. Harith, Anal. Bioanal. Chem. 385, 316–325 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Khedr, S.H. Elnaby, V. Palleschi, A. Salvetti, M.A. Harith, Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Appl. Phys. B 83, 651–657 (2006)ADSGoogle Scholar
  29. 29.
    R. Kumar, R.J. Choudhary, S.I. Patil, S. Hussain, J.P. Srivastava, S.P. Sanyal, S.E. Lofland, Structural, electrical transport, magnetization, and 1/f noise studies in 200 MeV Ag ion irradiated La0.7Ce0.3MnO3 thin films. J. Appl. Phys. 96, 7383–7387 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    H.P. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)Google Scholar
  31. 31.
    M. Dongol, A. El-Denglawey, M.S. Abd El Sadek, I.S. Yahia, Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik 126, 1352–1357 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    K. Mahmood, S. Bashir, M. Akram, A. Hayat, F. Ul-Haq And, S. Saadat, Carbon Ion irradiation effects on pulsed laser deposited titanium nitride thin films. Surf. Rev. Lett. 22, 1550020:1–1550020:10 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Thakurdesai, D. Kanjilal, V. Bhattacharyya, Formation of nano-hillocks by impact of swift heavy ions on thin films of TiO2. Appl. Surf. Sci. 254, 4695–4700 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Becker- de Mos, B., W. Kessler, Seelig, Determination of the electron density in an argon laser plasma by spectroscopy of the Hydrogen H α and H β Lines. Contributions to plasma physics 33, 275–284 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    W. Lochte-Holtgreven, Evaluation of plasma parameters, in Plasma Diagnostics (Wiley Interscience, New York, 1968)Google Scholar
  36. 36.
    R.W.P. McWhirter, Spectral Intensities, in Plasma Diagnostic Techniques (Academic Press, New York, 1965)Google Scholar
  37. 37.
  38. 38.
    Y. Lee, S.P. Sawan, T.L. Thiem., Y. Teng, J. Sneddon, Interaction of a laser beam with metals. Part II: Space-resolved studies of laser-ablated plasma emission. Appl. Spectrosc. 46, 436–441 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. H. Galmed
    • 1
    • 2
    • 3
    Email author
  • C. Steenkamp
    • 4
  • I. Ahmed
    • 5
  • A. du Plussis
    • 6
  • H. von Bergmann
    • 4
  • M. A. Harith
    • 1
  • M. Maaza
    • 2
    • 3
  1. 1.National Institute of Laser Enhanced Sciences (NILES), Cairo UniversityGizaEgypt
  2. 2.UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Science, Engineering and TechnologyUniversity of South AfricaPretoriaSouth Africa
  3. 3.Materials Research Department (MRD)iThemba LABS-National Research Foundation (NRF)Somerset WestSouth Africa
  4. 4.Physics DepartmentUniversity of StellenboschStellenboschSouth Africa
  5. 5.Experimental Physics Lab, National Center for PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  6. 6.CT Scanner FacilityUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations