Advertisement

Applied Physics B

, 124:219 | Cite as

Local zoom system for agricultural pest detection and recognition

  • Benlan Shen
  • Jun ChangEmail author
  • Chuhan Wu
  • Yihan Jin
  • Weilin Chen
  • Dalin Song
  • Yu Mu
Article
  • 78 Downloads

Abstract

The ability to detect and recognize insect pests is of great importance for the output and quality of agricultural production. Computer vision is widely used in pest image detection and recognition. However, the images tend to be of low magnification because of the sparse deployment of cameras in the farmland. Here, we present a 4.5× local zoom system for pest images of local high-magnification in a wide field of view. Such a system has a local zoom imaging channel for pest fine recognition and a peripheral imaging channel for searching pests with the same image plane. High-magnification imaging is made possible with fewer cameras for agricultural pest detection and recognition using the local zoom system. The experimental set-up is built to validate the system’s basic principle and is well used for the imaging of aphids on plant leaves. The results demonstrate that the system performs well for imaging of pests at different local magnifications.

Keywords

Local zoom imaging Wide FOV Local scene of interest Pest images 

Notes

Acknowledgements

The work is supported by National Natural Science Foundation of China (NSFC) (61471039), National Key R&D Program of China and Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences.

Supplementary material

Supplementary material 1 (MP4 6232 KB)

Supplementary material 2 (MP4 9465 KB)

Supplementary material 3 (MP4 9407 KB)

References

  1. 1.
    B. Škaloudová, V. Křivan, R. Zemek, Comput. Electr. Agric. 53, 81 (2006)CrossRefGoogle Scholar
  2. 2.
    B. Paul, M. Vincent, M. Sabine, Comput. Electr. Agric. 62, 81 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Faithpraise, P. Birch, R. Young, J. Obu, B. Faithpraise, C. Chatwin, Int. J. Adv. Biotechnol. Res. 4, 189 (2013)Google Scholar
  4. 4.
    L. Roldán-Serrato, T. Baydyk, E. Kussul, A. Escalante-Estrada, International Work Conference on Bioinspired Intelligence IEEE 33, 21 (2015)Google Scholar
  5. 5.
    C. Xie, R. Li, W. Dong, L. Song, J. Zhang, H. Chen, T. Chen, Trans. Chin. Soc. Agric. Eng. 32, 144 (2016)Google Scholar
  6. 6.
    M.A. Ebrahimi, M.H. Khoshtaghaza, S. Minaei, B. Jamshidi, Comput. Electr. Agric. 137, 52 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Cheng, Y. Zhang, Y. Chen, Y. Wu, Y. Yue, Comput. Electr. Agric. 141, 351 (2017)CrossRefGoogle Scholar
  8. 8.
    S.C. Park, J. Park, J. Korean Phys. Soc. 54, 2274 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Lee, M. Choi, E. Lee, K.D. Jung, J.H. Chang, W. Kim, Opt. Express 21, 1751 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Q. Hao, X. Cheng, K. Du, Opt. Express 21, 7758 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    A. Miks, J. Novak, Opt. Express 22, 27056 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D. Lee, S.C. Park, J. Opt. Soc. Korea 20, 283 (2016)CrossRefGoogle Scholar
  13. 13.
    S.H. Jo, S.C. Park, Opt. Express 26, 13370 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hua, S. Liu, Appl. Opt. 47, 317 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C. Xu, D. Cheng, J. Chen, Y. Wang, Appl. Opt. 55, 2353 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    T. Martinez, D.V. Wick, S. R. Restaino. Opt. Express 8, 555 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Wick, T. Martinez, S.R. Restaino, Opt. Express 10, 60 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhao, Y. Xie, W. Zhao, Opt. Eng. 47, 1065 (2008)Google Scholar
  19. 19.
    J. Parent, S. Thibault, Appl. Opt. 49, 2686 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Parent, S. Thibault, Opt. Express 19, 5676 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Niu, J. Chang, F. Lv, B. Shen, W. Chen, Appl. Opt. 56, 7915 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    W.J. Smith, Modern lens Design, 4th ed., Chap. 13Google Scholar
  23. 23.
    K. Tanaka, Appl. Opt. 21, 2174 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    S.C. Park, R.R. Shannon, Opt. Eng. 35, 1668 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Benlan Shen
    • 1
  • Jun Chang
    • 1
    Email author
  • Chuhan Wu
    • 1
  • Yihan Jin
    • 1
  • Weilin Chen
    • 1
  • Dalin Song
    • 1
    • 2
  • Yu Mu
    • 1
    • 3
  1. 1.School of Optics and PhotonicsBeijing Institute of TechnologyBeijingChina
  2. 2.The First Research Institute of the Ministry of Public SecurityBeijingChina
  3. 3.Tianjin Jinhang Institute of Technical PhysicsTianjinChina

Personalised recommendations