Applied Physics B

, 124:226 | Cite as

Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses

  • B. J. Chen
  • J. X. Yang
  • E. Y. B. Pun
  • X. ZhaoEmail author
  • H. LinEmail author


Efficient infrared emissions at ~ 1.2 and ~ 2.0 µm were recorded in Ho3+-single-doped and Ho3+/Yb3+-co-doped aluminum germanate glasses (NMAG), respectively. The maximum stimulated emission cross-sections for the ~ 1.2- and ~ 2.0 µm emissions were derived to be 2.3 × 10−21 and 5.8 × 10−21 cm2, respectively; then the gain cross-sections were further evaluated and the effective gains have been anticipated. In addition, the channel waveguide fabricated by K+–Na+ ion-exchanged method exhibited a complete single mode at 1.55 µm and the field diameters were identified to be horizontally 10.6 µm and vertically 6.7 µm. Effective amplified spontaneous emission at ~ 2.0 µm was recorded under 980 nm laser pumping. Broad bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Ho3+- and Yb3+-doped NMAG glasses are promising for the development of optical amplifier, tunable laser and light source operating at ~ 1.2 and ~ 2.0 µm.

Graphical abstract



This work is supported by the Natural Science Foundation of Liaoning Province, China (2015020187) and the Research Grants Council of Hong Kong, China (CityU 11218018).


  1. 1.
    S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)CrossRefGoogle Scholar
  2. 2.
    M.K. Gnanasammandhan, N.M. Idris, A. Bansal, K. Huang, Y. Zhang, Near-IR photoactivation using mesoporous silica-coated NaYF4: Yb, Er/Tm upconversion nanoparticles. Nat. Protoc. 11(4), 688–713 (2016)CrossRefGoogle Scholar
  3. 3.
    J.C. Tung, P.H. Tuan, H.C. Liang, K.F. Huang, Y.F. Chen, Fractal frequency spectrum in laser resonators and three-dimensional geometric topology of optical coherent waves. Phys. Rev. A 94(2), 023811 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    J. Ruan, Y. Chi, X. Liu, G. Dong, G. Lin, D. Chen, E. Wu, J. Qiu, Enhanced near-infrared emission and broadband optical amplification in Yb-Bi co-doped germanosilicate glasses. J. Phys. D:Appl. Phys. 42(15), 155102 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S.D. Jackson, Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6(7), 423–431 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    T. Wang, D. Zhao, M. Zhang, J. Yin, W. Song, Z. Jia, X. Wang, G. Qin, W. Qin, F. Wang, D. Zhang, Optical waveguide amplifiers based on NaYF4: Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposites. Opt. Mater. Express 5(3), 469–478 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    D.S.D. Silva, L.P. Naranjo, L.R.P. Kassab, C.B.D. Araújo, Photoluminescence from germanate glasses containing silicon nanocrystals and erbium ions. Appl. Phys. B-Lasers O. 106(4), 1015–1018 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Geng, Q. Wang, Y. Lee, S. Jiang, Development of eye-safe fiber lasers near 2 µm. IEEE J. Sel. Top. Quantum 20(5), 150–160 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Lin, D. Chen, Y. Yu, A. Yang, Y. Wang, Near-infrared quantum cutting in Ho3+/Yb3+ co-doped nanostructured glass ceramic. Opt. Lett. 36(6), 876–878 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhao, C. Liu, M. Xia, Q. Yin, X. Zhao, J. Han, Intense ∼1.2 µm emission from Ho3+/Y3+ ions co-doped oxyfluoride glass-ceramics containing BaF2 nanocrystals. J. Alloy. Compd. 701, 392–398 (2017)CrossRefGoogle Scholar
  11. 11.
    J.P. Zhang, W.J. Zhang, J. Yuan, Q. Qian, Q.Y. Zhang, Enhanced 2.0 µm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions. J. Am. Ceram. Soc. 96(12), 3836–3841 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W.A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, D. Dorosz, Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. J. Alloy. Compd. 727, 1221–1226 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, L. Zhang, Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 µm. J. Non Cryst. Solids 357(11–13), 2431–2434 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Zhang, Q.J. Chen, Q. Qian, Q.Y. Zhang, The 1.2 and 2.0 µm emission from Ho3+ in glass ceramics containing BaF2 nanocrystals. J. Am. Ceram. Soc. 95(2), 663–669 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Wang, X. Zhu, Y. Ma, Y. Wang, M. Tong, S. Fu, J. Zong, K. Wiersma, A. Chavez-Pirson, R. Norwood, N. Peyghambarian, Compact CNT mode-locked Ho3+-doped fluoride fiber laser at 1.2 µm. IEEE J. Sel. Top. Quantum 24(3), 1–5 (2018)Google Scholar
  16. 16.
    M. Seshadri, L.C. Barbosa, M. Radha, Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3+ doped tellurite glasses. J. Non Cryst. Solids 406(1), 62–72 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, D. Chen, Z. Yang, Two micrometer fluorescence emission and energy transfer in Yb3+/Ho3+ co-doped lead silicate glass. Int. J. Appl. Glass Sci. 8(2), 196–203 (2017)CrossRefGoogle Scholar
  18. 18.
    Y.C. Wang, X.S. Zhu, C.X. Sheng, L. Li, Q. Chen, J. Zong, K. Wiersam, A. Chavez-Pirson, SESAM Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm. IEEE Photonic Technol. 29(9), 743–746 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    M. Wanner, M. Avram, D. Gagnon, M.C.M. Jr, D. Zurakowski, K. Watanabe, Z. Tannous, R.R. Anderson, D. Manstein, Effects of non-invasive 1.210 nm laser exposure on adipose tissue: Results of a human pilot study. Laser Surg. Med. 41(6), 401–407 (2009)CrossRefGoogle Scholar
  20. 20.
    X.Z. Yang, L. Zhang, Y. Feng, X.S. Zhu, R.A. Norwood, N. Peyghambarian, Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Li, Z. Song, Z. Yin, Q. Kuang, R. Wan, Y. Zhou, Q. Liu, J. Qiu, Z. Yang, Investigation on the upconversion emission in 2D BiOBr: Yb3+/Ho3+ nanosheets. Spectrochim. Acta A 150, 135–141 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Yang, L. Zhang, Y. Feng, X. Zhu, R.A. Norwood, N. Peyghambarian, Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technolo. 34(18), 4266–4270 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    G.J. Gao, G.N. Wang, C.L. Yu, J.J. Zhang, L.L. Hu, Investigation of 2.0 µm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass. J. Lumin. 129(9), 1042–1047 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Yang, H. Xia, Y. Jiang, Y. Jiang, J. Zhang, Y. Shi, X. Gu, J. Zhang, Y. Zhang, H. Jiang, B. Chen, Tm3+ doped α-NaYF4 single crystal for 2 µm laser application. J. Alloy. Compd. 643, 1–6 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Feng, S. Yang, H. Xia, C. Wang, D. Jiang, J. Zhang, X. Gu. Y. Zhang, B. Chen, H. Jiang, Energy transfer and 2.0 µm emission in Tm3+/Ho3+ co-doped α-NaYF4 single crystals. Mater. Res. Bull. 76, 279–283 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Tian, X. Jing, S. Xu, Spectroscopic analysis and efficient diode-pumped 2.0 µm emission in Ho3+/Tm3+ codoped fluoride glass. Spectrochim. Acta A. 115, 33–38 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    C.S. Rao, K.U. Kumar, P. Babu, C.K. Jayasankar, Optical properties of Ho3+ ions in lead phosphate glasses. Opt. Mater. 35(2), 102–107 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J.S. Sanghera, I.D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-Cryst. Solids 256, 6–16 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    J. Xia, Y. Tian, B. Li, L. Zheng, X. Jing, J. Zhang, S. Xu, Enhanced 2.0 µm emission in Ho3+/Yb3+ co-doped silica-germanate glass. Infrared Phys. Technol. 81, 17–20 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    E. Álvarez, M.E. Zayas, J. Alvarado-Rivera, F. Félix-Domínguez, R.P. Duarte-Zamorano, U. Caldiño, New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass. J. Lumin. 153(3), 198–202 (2014)CrossRefGoogle Scholar
  31. 31.
    W.A. Pisarski, J. Pisarska, D. Dorosz, J. Dorosz, Towards lead-free oxyfluoride germanate glasses singly doped with Er3+ for long-lived near-infrared luminescence. Mater. Chem. Phys. 148(3), 485–489 (2014)CrossRefGoogle Scholar
  32. 32.
    A.I. Chernov, B.I. Denker, R.P. Ermakov, B.I. Galagan, L.D. Iskhakova, S.E. Sverchkov, V.V. Velmiskin, E.M. Dianov, Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses. Appl. Phys. B-Lasers O. 122(9), 243 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J. Yuan, S.X. Shen, D.D. Chen, Q. Qian, M.Y. Peng, Q.Y. Zhang, Efficient 2.0 µm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 µm laser. J. Appl. Phys. 113(7), 173507 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Yamamoto, T. Yamaga, Y. Sakai, T. Ishida, S. Nakasone, Association between physical performance and cardiovascular events in patients with coronary artery disease: protocol for a meta-analysis. Syst. Rev. 5(1), 32 (2016)CrossRefGoogle Scholar
  35. 35.
    R.A. Brown, E. Shantsila, C. Varma, G.Y.H. Lip, Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: the role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Ann. Med. 48(6), 444–455 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Dou, L. Shen, N. Wang, Y. Cai, M. Cai, Y. Guo, F. Huang, Y. Tian, S. Xu, J. Zhang, Investigation of Tm3+/Yb3+ co-doped germanate–tellurite glasses for efficient 2 µm mid-infrared laser materials. Appl. Phys. B Lasers O. 124(5), 86 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, Z. Xiao, Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 µm luminescence. J. Alloy. Compd. 649, 1191–1196 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Cao, M. Cai, Y. Lu, Y. Tian, F.F. Huang, S.Q. Xu, J.J. Zhang, Ho3+/Yb3+ codoped silicate glasses for 2 µm emission performances. Appl. Opt. 55(8), 2065–2070 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, S. Kaewjaeng, Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. J. Non-Cryst. Solids 474, 50–57 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    A. Speghini, M. Peruffo, M. Casarin, D. Ajò, M. Bettinelli, Electronic spectroscopy of trivalent lanthanide ions in lead zinc borate glasses. J. Alloy. Compd. 300–301, 174–179 (2000)CrossRefGoogle Scholar
  41. 41.
    Q. Zhang, G. Chen, G. Zhang, J. Qiu, D. Chen, Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer. J. Appl. Phys. 106(11), 113102 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    J. Yuan, S.X. Shen, D.D. Chen, Q. Qian, M.Y. Peng, Efficient 2.0 µm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 µm laser. J. Appl. Phys. 113(17), 173507 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    S.B. Rai, A.K. Singh, S.K. Sing, Spectroscopic properties of Ho3+ ions doped in tellurite glass. Spectrochim. Acta A 59(14), 3221–3226 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    G. Bai, Y. Guo, Y. Tian, L. Hu, J. Zhang, Light emission at 2 µm from Ho3+/Tm3+/Yb3+ co-doped silicate glasses. Opt. Mater. 33(8), 1316–1319 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, J. Zhang, 2 µm emission of Ho3+ doped fluorophosphate glass sensitized by Yb3+. Opt. Mater. 32(11), 1508–1513 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    X. Wang, H. Lin, D. Yang, L. Lin, E.Y.B. Pun, Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses. J. Appl. Phys. 101(11), 113535 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    B. Zhou, E.Y.B. Pun, H. Lin, D. Yang, L. Huang, Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses. J. Appl. Phys. 106(10), 103–105 (2009)CrossRefGoogle Scholar
  48. 48.
    J. Zhang, N. Wang, Y. Guo, M. Cai, Y. Tian, F. Huang, S. Xu, Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ∼2 µm mid-infrared laser material. Spectrochim. Acta A. 199, 65–70 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Voiokitina, E. Vilejshikova, J.M. Serres, A. Baranov, K. Yumashev, M. Aguiló, F. Díaz, Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal. J. Lumin. 190, 37–44 (2017)CrossRefGoogle Scholar
  50. 50.
    E.S. Yousef, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application, J. Alloy. Compd. 561, 234–240 (2013)CrossRefGoogle Scholar
  51. 51.
    T. Schweizer, B.N. Samson, J.R. Hector, W.S. Brocklesby, D.W. Hewak, D.N. Payne, Infrared emission from holmium doped gallium lanthanum sulphide glass. Infrared Phys. Technol. 40(4), 329–335 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    B. Zhou, D.L. Yang, H. Lin, E.Y.B. Pun, Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications. J. Non-Cryst. Solids 357(11–13), 2468 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    K. Biswas, A.D. Sontakke, R. Sen, K. Annapurna, Enhanced 2 µm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3–GeO2–ZnO glasses. Spectrochim. Acta A 112, 301–308 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    F.K. William, L.L. Chase, Ground-state depleted solid-state lasers: principles, characteristics and scaling. Opt. Quantum Electron. 22(1), S1–S22 (1990)CrossRefGoogle Scholar
  55. 55.
    S.I. Najafi, Optical behavior of potassium ion-exchanged glass waveguides. Appl. Opt. 27(17), 3728–3731 (1988)ADSCrossRefGoogle Scholar
  56. 56.
    F. Wang, B. Chen, E.Y.B. Pun, H. Lin, Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide. Opt. Mater. 42, 484–490 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    J.E. Gortych, D.G. Hall, Fabrication of planar optical waveguides by K+ ion exchange in BK7 glass. Opt. Lett. 11(2), 100–102 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin, Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides. J. Opt. Soc. Am. B. 26(2), 357–363 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Textile and Material EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.Department of Electronic Engineering and State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongKowloonPeople’s Republic of China

Personalised recommendations