Advertisement

Applied Physics B

, 124:211 | Cite as

Direct electron acceleration for diagnostics of a laser pulse focused by an off-axis parabolic mirror

  • O. E. VaisEmail author
  • V. Yu. Bychenkov
Article
  • 140 Downloads

Abstract

We develop a theoretical basis for a new method of high-intensity ultrashort laser pulse diagnostics via vacuum electron acceleration from an ultrathin foil. A laser pulse is focused by an off-axis parabolic mirror, which has practical interest for most experiments with high-intensity pulses. The field description is based on Stratton–Chu integrals, which allow covering all focusing ranges up to the diffraction limit where the six-component laser field is correctly described. The theoretical approach uses a test particle method applicable for quite thin foils and rarefied gases, where the plasma fields do not substantially affect electron acceleration. The diagnostic method is to use measurements of angular-spectrum characteristics of laser accelerated or scattered electrons to compare them with the theory developed here. The proposed method can diagnose not only the intensity but also the quality of a laser pulse.

Notes

Acknowledgements

Special thanks are due to Drs. A. Maksimchuk, A. G. R. Thomas (University of Michigan, USA) and S. Ter-Avetisyan (ELI-ALPS Research Institute, Hungary) for the fruitful discussions.

Funding

This work was supported by the Russian Science Foundation (Grant no. 17-12-01283).

References

  1. 1.
    D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    A. Dubietis et al., Opt. Commun. 8, 33 (1992)Google Scholar
  3. 3.
    C.N. Danson et al., Nucl. Fusion 44, S239 (2004)CrossRefGoogle Scholar
  4. 4.
    E.W. Gaul, M. Martinez, J. Blakeney et al., Appl. Opt. 49, 1676 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Cs. Toth, D. Evans, A. J. Gonsalves et al. AIP Conf. Proc. 1812, 110005 (2017)CrossRefGoogle Scholar
  6. 6.
    J.H. Sung, H.W. Lee, J.Y. Yoo et al., Opt. Lett. 42, 2058 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Gan, L. Yu, S. Li et al., Opt. Express 25, 5169 (2017)ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    V. Yanovsky, V. Chuykov, G. Kalinichenko et al., Opt. Express 16, 2109 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A.S. Pirozhkov, Yu. Fukuda, M. Nishiuchi et al., Opt. Express 25, 20486 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M.G. Pullen, W.C. Wallace, D.E. Laban et al., Phys. Rev. A 87, 053411 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, N. Miyanaga, Appl. Phys. Express 10, 102702 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A.L. Galkin, M.P. Kalashnikov et al., Phys. Plasmas 17, 053105 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    O.E. Vais, S.G. Bochkarev, V.Yu. Bychenkov, Quantum Electron. 47, 38 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    O.E. Vais, S.G. Bochkarev, V.Yu. Bychenkov, Plasma Phys. Rep. 42, 818 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, D. Umstadter, Nat. Photon. 11, 514 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Kalashnikov, A. Andreev et al., Laser Part. Beams 33, 361 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    P.M. Woodward, J.D. Lawson, J. Inst. Electr. Eng. 95, 363 (1948)Google Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1971)zbMATHGoogle Scholar
  23. 23.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)zbMATHGoogle Scholar
  24. 24.
    Y.I. Salamin, G.R. Mocken, C.H. Keitel, Phys. Rev. STAB 5, 101301 (2002)ADSGoogle Scholar
  25. 25.
    S.G. Bochkarev, V.Yu. Bychenkov, Quantum Electron. 37, 273 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    K.I. Popov, VYu. Bychenkov, W. Rozmus, R.D. Sydora, Phys. Plasmas 14, 013108 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S.-W. Bahk, P. Rousseau et al., Appl. Phys. B 80, 823 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Stratton, L.J. Chu, Phys. Rev. 56, 99 (1939)ADSCrossRefGoogle Scholar
  29. 29.
    P. Varga, P. Török, J. Opt. Am. A 17, 2081 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 102, 254802 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Zhidkov, J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88, 185002 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    R.R. Pandit, E. Ackad, E. d'Humieres, Y. Sentoku, Phys. Plasmas 24, 103302 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    E. Gelfer, N. Elkina, A. Fedotov, Sci. Rep. 8, 6478 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    S.V. Bulanov, T.Z. Esirkepov, J. Koga, T. Tajima, Plasma Phys. Rep. 30, 196 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    A.V. Bashinov, A.V. Kim, Phys. Plasmas 20, 113111 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    H. Jeffreys, B. Jeffreys, Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1965)zbMATHGoogle Scholar
  37. 37.
    C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)Google Scholar
  38. 38.
    B. Quesnel, P. Mora, Phys. Rev. E 58, 3719 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    S. Masuda, M. Kando, H. Kotaki, K. Nakajima, Phys. Plasmas 12, 013102 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    M. Santarsiero, D. Aiello, R. Borghi, S. Vicalvi, J. Mod. Opt. 44, 633 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    J. Pang, Y.K. Ho, X.Q. Yuan, Q. Kong, N. Cao et al., Phys. Rev. E 66, 066501 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    L.J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljačić, J.D. Joannopoulos, F.X. Kärtner, I. Kaminer, Sci. Rep. 7, 11159 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    O.B. Shiryaev, Laser Part. Beams 35, 66 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser et al., Rev. Sci. Instrum. 38, 3277 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    C. Iaconis, I.A. Walmsley, Opt. Express 23, 792 (1998)Google Scholar
  46. 46.
    D.N. Papadopoulos, P. Ramirez, K. Genevrier et al., Opt. Lett. 42, 35303533 (2017)CrossRefGoogle Scholar
  47. 47.
    H. Kiriyama, M. Mori, A.S. Pirozhkov, K. Ogura, A. Sagisaka, A. Kon, T.Z. Esirkepov et al., IEEE J. Sel. Top. Quantum Electron. 21(2015), 232–249 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    L. Yu, L. Xu, Y. Liu, Y. Li, S. Li et al., Opt. Express 26, 2625 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Chu, X. Liang, L. Yu et al., Opt. Express 21, 29231 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, F. Krausz, Opt. Lett. 34, 2459 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, F.X. Kärtner, Opt. Lett. 39, 2487 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    X. Gu, G. Marcus, Yu. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak et al., Opt. Express 17, 62 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, J. Faure, Nat. Photon. 11, 293 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    A.F. Lifschitz, V. Malka, New J. Phys. 14, 053045 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Center For Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA)MoscowRussia

Personalised recommendations