Advertisement

Applied Physics B

, 124:206 | Cite as

Thermally induced multi-wavelength filtering in electro-optic long period Ti:LiNbO3 waveguide grating

  • Yuan Chen
  • Rui-Qi Piao
  • Chao-Yang Zhang
  • Zi-Bo Zhang
  • Jia-Qi Xu
  • De-Long Zhang
Article

Abstract

We have studied thermal effect on filtering feature of electro-optic long period grating (LPG) in Ti-diffused LiNbO3 waveguide, and observed the phenomenon of thermally induced multi-wavelength filtering. At room temperature (20.8 °C), a rejection band due to LPG effect is observed at 1450 nm wavelength regime for a driving voltage of 115 V. As the temperature is increased, the band weakens gradually, and is no longer discernible at 27 °C. Meanwhile, three new dips with similar contrasts and wavelength intervals are resolved at shorter wavelengths 1190, 1265 and 1339 nm. Their contrasts increase with a rise in temperature and have a value of 20 dB at available temperature of 44.5 °C. The positions of these dips change little with the temperature, but red-shift with the increase of driving voltage. These dips are associated with thermally induced multi-mode interference.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Project nos. 61875148, 61628501, 51472240, 61377060, 61077039, 50872089, 60577012, and by the Tianjin Science and Technology Commission of China under Project no. 16JCZDJC37400.

References

  1. 1.
    H.C. Tsoi, W.H. Wong, E.Y.B. Pun, IEEE Photon. Technol. Lett. 15(5), 721 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    H.Y. Tang, W.H. Wong, E.Y.B. Pun, Appl. Phys. B Opt. Lasers 79(1), 95 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Chiang, K.P. Lor, C.K. Chow, H.P. Chan, V. Rastogi, Y.M. Chu, IEEE Photon. Technol. Lett. 15(8), 1094 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, G. Cyril, Opt. Commun. 233(1–3), 97 (2004)Google Scholar
  5. 5.
    G. Perentos, Kostovski, A. Mitchell, IEEE Photon. Technol. Lett. 17(12), 2595 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kulishov, X. Daxhelet, M. Gaidi, M. Chaker, J. Lightwave Technol. 22(3), 923 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Kwon, S.Y. Shin, IEEE J. Sel. Top. Quant. Electron. 11(1), 190 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    K.S. Chiang, C.K. Chow, Q. Liu, H.P. Chan, K.P. Lor, IEEE Photon. Technol. Lett. 18(9), 1109 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, C. Dhanavantri, IEEE Photon. Technol. Lett. 21(20), 1490 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    W. Jin, K.S. Chiang, Q. Liu, Opt. Express 16(25), 20409 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    W. Jin, K.S. Chiang, Q. Liu, Opt. Lett. 35(4), 484 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D.L. Zhang, J. Kang, W.H. Wong, D.Y. Yu, E.Y.B. Pun, Opt. Lett. 40(20), 4715 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, K.K. Wong, Electron. Lett. 34(12), 1228 (1998)CrossRefGoogle Scholar
  14. 14.
    L.B. Soldano, C.M. Erik, Pennings, J. Lightwave Technol. 13(4), 615 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Y.L. Lee, Y.W. Choi, H.S. Jung, T.J. Eom, W. Shin, D.K. Ko, W.S. Yang, H.M. Lee, W.K. Kim, H.Y. Lee, IEEE Photon. Technol. Lett. 21(8), 507 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Y.L. Lee, T.J. Eom, W. Shin, B.A. Yu, D.K. Ko, W.K. Kim, H.Y. Lee, Opt. Express 17(13), 10718 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    E. Strake, G.P. Bava, I. Montrosset, J. Lightwave Technol. 6(6), 1126 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    U. Schlarb, K. Betzler, Phys. Rev. B 48(21), 15613 (1993)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    S.T. Popescu, A. Petris, V.I. Vlad, Interferometric measurement of the pyroelectric coefficient in lithium niobate. J. Appl. Phys. 113, 043101 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37, 191–203 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    S. Fieberg, L. Streit, J. Kiessling, P. Becker, L. Bohaty, F. Kuehnemann, K. Buse, Proc. SPIE 9347, 93471C (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Chen
    • 1
  • Rui-Qi Piao
    • 1
  • Chao-Yang Zhang
    • 1
  • Zi-Bo Zhang
    • 2
  • Jia-Qi Xu
    • 1
  • De-Long Zhang
    • 1
  1. 1.Department of Opto-Electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronics Information and Technical Science (Ministry of Education)Tianjin UniversityTianjinChina
  2. 2.Department of EngineeringPierre and Marie Curie University (University of Paris VI)ParisFrance

Personalised recommendations