Advertisement

Applied Physics B

, 124:206 | Cite as

Thermally induced multi-wavelength filtering in electro-optic long period Ti:LiNbO3 waveguide grating

  • Yuan Chen
  • Rui-Qi Piao
  • Chao-Yang Zhang
  • Zi-Bo Zhang
  • Jia-Qi Xu
  • De-Long Zhang
Article
  • 71 Downloads

Abstract

We have studied thermal effect on filtering feature of electro-optic long period grating (LPG) in Ti-diffused LiNbO3 waveguide, and observed the phenomenon of thermally induced multi-wavelength filtering. At room temperature (20.8 °C), a rejection band due to LPG effect is observed at 1450 nm wavelength regime for a driving voltage of 115 V. As the temperature is increased, the band weakens gradually, and is no longer discernible at 27 °C. Meanwhile, three new dips with similar contrasts and wavelength intervals are resolved at shorter wavelengths 1190, 1265 and 1339 nm. Their contrasts increase with a rise in temperature and have a value of 20 dB at available temperature of 44.5 °C. The positions of these dips change little with the temperature, but red-shift with the increase of driving voltage. These dips are associated with thermally induced multi-mode interference.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Project nos. 61875148, 61628501, 51472240, 61377060, 61077039, 50872089, 60577012, and by the Tianjin Science and Technology Commission of China under Project no. 16JCZDJC37400.

References

  1. 1.
    H.C. Tsoi, W.H. Wong, E.Y.B. Pun, IEEE Photon. Technol. Lett. 15(5), 721 (2003)CrossRefADSGoogle Scholar
  2. 2.
    H.Y. Tang, W.H. Wong, E.Y.B. Pun, Appl. Phys. B Opt. Lasers 79(1), 95 (2004)CrossRefADSGoogle Scholar
  3. 3.
    K.S. Chiang, K.P. Lor, C.K. Chow, H.P. Chan, V. Rastogi, Y.M. Chu, IEEE Photon. Technol. Lett. 15(8), 1094 (2003)CrossRefADSGoogle Scholar
  4. 4.
    M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, G. Cyril, Opt. Commun. 233(1–3), 97 (2004)Google Scholar
  5. 5.
    G. Perentos, Kostovski, A. Mitchell, IEEE Photon. Technol. Lett. 17(12), 2595 (2005)CrossRefADSGoogle Scholar
  6. 6.
    M. Kulishov, X. Daxhelet, M. Gaidi, M. Chaker, J. Lightwave Technol. 22(3), 923 (2004)CrossRefADSGoogle Scholar
  7. 7.
    M.S. Kwon, S.Y. Shin, IEEE J. Sel. Top. Quant. Electron. 11(1), 190 (2005)CrossRefADSGoogle Scholar
  8. 8.
    K.S. Chiang, C.K. Chow, Q. Liu, H.P. Chan, K.P. Lor, IEEE Photon. Technol. Lett. 18(9), 1109 (2006)CrossRefADSGoogle Scholar
  9. 9.
    S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, C. Dhanavantri, IEEE Photon. Technol. Lett. 21(20), 1490 (2009)CrossRefADSGoogle Scholar
  10. 10.
    W. Jin, K.S. Chiang, Q. Liu, Opt. Express 16(25), 20409 (2008)CrossRefADSGoogle Scholar
  11. 11.
    W. Jin, K.S. Chiang, Q. Liu, Opt. Lett. 35(4), 484 (2010)CrossRefADSGoogle Scholar
  12. 12.
    D.L. Zhang, J. Kang, W.H. Wong, D.Y. Yu, E.Y.B. Pun, Opt. Lett. 40(20), 4715 (2015)CrossRefADSGoogle Scholar
  13. 13.
    H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, K.K. Wong, Electron. Lett. 34(12), 1228 (1998)CrossRefGoogle Scholar
  14. 14.
    L.B. Soldano, C.M. Erik, Pennings, J. Lightwave Technol. 13(4), 615 (1995)CrossRefADSGoogle Scholar
  15. 15.
    Y.L. Lee, Y.W. Choi, H.S. Jung, T.J. Eom, W. Shin, D.K. Ko, W.S. Yang, H.M. Lee, W.K. Kim, H.Y. Lee, IEEE Photon. Technol. Lett. 21(8), 507 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Y.L. Lee, T.J. Eom, W. Shin, B.A. Yu, D.K. Ko, W.K. Kim, H.Y. Lee, Opt. Express 17(13), 10718 (2009)CrossRefADSGoogle Scholar
  17. 17.
    E. Strake, G.P. Bava, I. Montrosset, J. Lightwave Technol. 6(6), 1126 (1988)CrossRefADSGoogle Scholar
  18. 18.
    U. Schlarb, K. Betzler, Phys. Rev. B 48(21), 15613 (1993)CrossRefADSGoogle Scholar
  19. 19.
  20. 20.
    S.T. Popescu, A. Petris, V.I. Vlad, Interferometric measurement of the pyroelectric coefficient in lithium niobate. J. Appl. Phys. 113, 043101 (2013)CrossRefADSGoogle Scholar
  21. 21.
    R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37, 191–203 (1985)CrossRefADSGoogle Scholar
  22. 22.
    S. Fieberg, L. Streit, J. Kiessling, P. Becker, L. Bohaty, F. Kuehnemann, K. Buse, Proc. SPIE 9347, 93471C (2015)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Chen
    • 1
  • Rui-Qi Piao
    • 1
  • Chao-Yang Zhang
    • 1
  • Zi-Bo Zhang
    • 2
  • Jia-Qi Xu
    • 1
  • De-Long Zhang
    • 1
  1. 1.Department of Opto-Electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronics Information and Technical Science (Ministry of Education)Tianjin UniversityTianjinChina
  2. 2.Department of EngineeringPierre and Marie Curie University (University of Paris VI)ParisFrance

Personalised recommendations