Advertisement

Applied Physics B

, 124:199 | Cite as

Down-conversion PL characteristics of CaSrSiO4:Tb3+ nanophosphor and its application on optical low-temperature sensor

  • Qian Wu
  • Shufeng Li
  • Chengren Li
  • Qi Xu
  • Jingchang Sun
  • Zhongwen Kang
  • Chunlei Song
Article
  • 20 Downloads

Abstract

The CaSrSiO4 nanophosphor-doped 0.7 mol% Tb3+ ions have been prepared by the high-temperature sintering method. XRD pattern is consistent with the standard card of CaSrSiO4 host, and the average particle size of CaSrSiO4:0.7Tb is about 50 nm. There exist intense green (544, 552 nm) and weak blue (485, 488 nm), yellow (588 nm), and red (625 nm) emissions under the excitation of 325 nm He–Cd laser, corresponding, respectively, to the transitions of Tb3+ ions from 5D4 and its splitting to 7F5,4,6,3,2 energy levels. The low-temperature photoluminescence characteristics of the sample are measured in the range of 290–10 K. The relationship between fluorescence intensity ratio and temperature is FIR = 0.895 + 0.469exp(− 145.8/T) and the maximum value of sensitivity is 17.6 × 10− 4 K− 1 at 70 K, indicating that CaSrSiO4:Tb3+ nanophosphor is a promising sensing material for low-temperature measurement.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11004092), the Foundation of Science and Technology Department of Liaoning Province, China (201602455) and the Foundation of Education Department of Liaoning Province, China (L201683665).

References

  1. 1.
    C.L. Zhu, E.Y.B. Pun, Z.Q. Wang, H. Lin, Appl. Phys. B 64, 123 (2017)Google Scholar
  2. 2.
    X.Y. Gao, C.R. Li, S.F. Li, H.B. Zhang, Z.C. Li, Y.Z. Hong, J.C. Sun, J. Lumin. 457, 190 (2017)Google Scholar
  3. 3.
    S.R. Choubey, S.C. Gedam, S.J. Dhoble, Luminescence 1199, 29 (2014)Google Scholar
  4. 4.
    J. Zheng, X.F. Wang, W.Y. He, Y.Y. Bu, X.H. Yan, Appl. Phys. B 443, 115 (2014)Google Scholar
  5. 5.
    S.K. Hussain, T.T.H. Giang, J.S. Yu, J. Alloy. Compd. 218, 739 (2018)Google Scholar
  6. 6.
    B. Dong, B.S. Cao, Y.Y. He, Z. Liu, Z.P. Li, Z.Q. Feng, Adv. Mater. 1987, 24 (2012)Google Scholar
  7. 7.
    Z.F. Yang, D.H. Xu, J.Y. Sun, J.N. Du, X.D. Gao, Mater. Sci. Eng. B 13, 211 (2016)Google Scholar
  8. 8.
    C.R. Li, S.F. Li, Y.Y. Guo, X.Y. Zhou, J.C. Sun, Y. Song, Q. Xu, J. Mod. Opt. 1638, 62 (2015)Google Scholar
  9. 9.
    P. Hidalgo, A. López, B. Méndez, J. Piqueras, Acta Mater. 84, 104 (2016)Google Scholar
  10. 10.
    A. Pandey, V.K. Rai, K. Kumar, Spectrochim. Acta Part A 619, 118 (2014)Google Scholar
  11. 11.
    L. Marciniak, A. Bednarkiewicz, W. Strek, Sens. Actuators B 381, 238 (2017)Google Scholar
  12. 12.
    H. Kusama, O.J. Sovers, T. Yoshioka, Jpn. J. Appl. Phys. 2349, 15 (1976)Google Scholar
  13. 13.
    W.W. Zhang, S.F. Collins, G.W. Baxter, F. Sidiroglou, C.K. Duan, M. Yin, Sens. Actuators A. 8, 232 (2015)Google Scholar
  14. 14.
    B. Dong, D.P. Liu, X.J. Wang, T. Yang, S.M. Miao, C.R. Li, Appl. Phys. Lett. 181117–3, 90 (2007)Google Scholar
  15. 15.
    C.R. Li, S.F. Li, B. Dong, Z.F. Liu, C.L. Song, Q.X. Yu, Sens. Actuators B 313, 134 (2008)Google Scholar
  16. 16.
    A. Pandey, V.K. Rai, Appl. Phys. B 221, 113 (2013)Google Scholar
  17. 17.
    G.Z. Sui, X.P. Li, L.H. Cheng, J.S. Zhang, J.S. Sun, H.Y. Zhong, Y. Tian, S.B. Fu, B.J. Chen, Appl. Phys. B 471, 110 (2013)Google Scholar
  18. 18.
    L. Mukhopadhyay, V.K. Rai, New J. Chem. 13122, 42 (2018)Google Scholar
  19. 19.
    S.V. Yap, R.M. Ranson, W.M. Cranton, D.C. Koutsogeorgis, G.B. Hix, J. Lumin. 416, 129 (2009)Google Scholar
  20. 20.
    A. Hastir, N. Kohli, R.C. Singh, Sens. Actuators B 110, 231 (2016)Google Scholar
  21. 21.
    B.C. Wang, C.R. Li, B. Dong, L. Zhang, W. Xu, Opt. Eng. 104401–4, 48 (2009)Google Scholar
  22. 22.
    N. Ishiwada, S. Fujioka, T. Ueda, T. Yokomori, Opt. Lett. 760, 36 (2011)Google Scholar
  23. 23.
    W.A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, W. R-Romanowski, Sens. Actuators B 85, 253 (2017)Google Scholar
  24. 24.
    C.R. Li, B. Dong, S.F. Li, C.L. Song, Chem. Phys. Lett. 426, 443 (2007)Google Scholar
  25. 25.
    W. Xu, H. Zhao, Z.G. Zhang, W.W. Cao, Sens. Actuators B 520, 178 (2013)Google Scholar
  26. 26.
    N. Rakov, G.S. Maciel, J. Appl. Phys. 113103–6, 121 (2017)Google Scholar
  27. 27.
    J.F. Tang, Y. Zhang, J. Gou, Z.L. Ma, G. Li, Y.H. Man, N.P. Cheng, J. Alloy. Compd. 229, 740 (2018)Google Scholar
  28. 28.
    S. Sinha, K. Kumar, Opt. Mater. 770, 75 (2018)Google Scholar
  29. 29.
    L.L. Tong, X.P. Li, R.N. Hua, L.H. Cheng, J.S. Sun, J.S. Zhang, S. Xu, H. Zheng, Y.Q. Zhang, B.J. Chen, Curr. Appl. Phys. 999, 17 (2017)Google Scholar
  30. 30.
    A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sens. Actuators B 352, 209 (2015)Google Scholar
  31. 31.
    P. Du, L.H. Luo, J.S. Yu, J. Alloy. Compd. 73, 632 (2015)Google Scholar
  32. 32.
    Q.H. Zuo, L.H. Luo, Y.J. Yao, J. Electron. Mater. 970, 45 (2016)Google Scholar
  33. 33.
    S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. 4743, 94 (2003)Google Scholar
  34. 34.
    A.K. Singh, S.B. Rai, D.K. Rai, V.B. Singh, Appl. Phys. B. 289, 82 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian Wu
    • 1
  • Shufeng Li
    • 2
  • Chengren Li
    • 1
  • Qi Xu
    • 1
  • Jingchang Sun
    • 1
  • Zhongwen Kang
    • 1
  • Chunlei Song
    • 1
  1. 1.School of Physics and Electronic TechnologyLiaoning Normal UniversityDalianChina
  2. 2.School of Physics and Optoelectronic EngineeringDalian University of TechnologyDalianChina

Personalised recommendations