Advertisement

Applied Physics B

, 124:196 | Cite as

A comprehensive investigation on core optoelectronic and laser properties of ZTS single crystals: an effect of Mg2+ doping

  • S. AlFaify
  • Mohd. Shkir
  • V. Ganesh
  • Mohd. Anis
  • I. S. Yahia
Article
  • 34 Downloads

Abstract

The synthesis and large-sized single crystals of pure and Mg2+-doped zinc (tris) thiourea sulfate has been developed using slow evaporation methods at 300 K. The size of the grown crystal for pure, 2% Mg and 5% Mg-doped ZTS is found to be ~ 15 mm × 17 mm, ~ 20 mm × 18 mm, and 22 mm × 10 mm, respectively. The crystal structural and vibrational modes are identified by powder X-ray diffraction, FT-IR and FT-Raman analyses. The grown crystal with 5% Mg doping possesses higher optical transparency (67%). Optical energy band gap is found ~ 4.36 eV for 2% Mg and ~ 4.41 eV for 5% Mg-doped crystals. Enhancement in PL intensity of UV band was observed due to doping. The third-order nonlinear susceptibility, χ3 is found to be enhanced due to doping which is in the order of 10−3 esu. DSC study confirms that the 5% MgZTS crystals possess higher thermal stability than pure as well as 2% MgZTS. Furthermore, the dielectric study confirms that the grown crystals possess low defects. The microhardness is also found to be enhanced due to doping. All the properties of ZTS are found to be enhanced by Mg doping and make it more suitable for optoelectronic and nonlinear applications compared to pure.

Notes

Acknowledgements

The authors would like to express their gratitude to deanship of scientific research, King Khalid University, Saudi Arabia for providing the financial support under the project number R.G.P. 2/10/39.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest involved in the current work.

Supplementary material

340_2018_7066_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)

References

  1. 1.
    S. Selvakumar, S.R. Kumar, K. Rajarajan, A.J.A. Pragasam, S. Rajasekar, K. Thamizharasan, P. Sagayaraj, Cryst. Growth Des. 6, 2607–2610 (2006)CrossRefGoogle Scholar
  2. 2.
    V. Kannan, N. Rajesh, R.B. Ganesh, P. Ramasamy, J. Cryst. Growth 269, 565–569 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K. Selvaraju, R. Valluvan, S. Kumararaman, Mater. Lett. 61, 751–753 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Sankar, C.M. Raghavan, R. Jayavel, Cryst. Growth Des. 7, 501–505 (2007)CrossRefGoogle Scholar
  5. 5.
    G.D. Andreetti, L. Cavalca, A. Musatti, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 24, 683–690 (1968)CrossRefGoogle Scholar
  6. 6.
    L. Cavalca, G.F. Gasparri, D. Andreetti, P. Domiano, Acta Crystallogr. A 22, 90–98 (1967)CrossRefGoogle Scholar
  7. 7.
    N. Sivakumar, N. Kanagathara, B. Varghese, G. Bhagavannarayana, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 603–613 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Shkir, S. Muhammad, S. AlFaify, A.R. Chaudhry, A.G. Al-Sehemi, Arab. J. Chem. (2016).  https://doi.org/10.1016/j.arabjc.2016.06.016 CrossRefGoogle Scholar
  9. 9.
    V. Venkataramanan, G. Dhanaraj, V. Wadhawan, J. Sherwood, H. Bhat, J. Cryst. Growth 154, 92–97 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    S.M.B. Dhas, S. Natarajan, Mater. Lett. 62, 1136–1138 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Brahadeeswaran, V. Venkataramanan, J.N. Sherwood, H.L. Bhat, J. Mater. Chem. 8, 613–618 (1998)CrossRefGoogle Scholar
  12. 12.
    H.O. Marcy, L.F. Warren, M.S. Webb, C.A. Ebbers, S.P. Velsko, G.C. Kennedy, G.C. Catella, Appl. Opt. 31, 5051–5060 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    T. Girisun, S. Dhanuskodi, Cryst. Res. Technol. 44, 1297–1302 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Venkataramanan, C. Subramanian, H. Bhat, J. Appl. Phys. 77, 6049–6051 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    M. Shkir, J. Mater. Res. 31, 1046–1055 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Shkir, V. Ganesh, S. AlFaify, K.K. Maurya, N. Vijayan, J. Appl. Crystallogr. 50, 1716–1724 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, K. Maurya, Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.12.001 CrossRefGoogle Scholar
  18. 18.
    P.M. Ushasree, R. Jayavel, P. Ramasamy, Mater. Sci. Eng. B 65, 153–158 (1999)CrossRefGoogle Scholar
  19. 19.
    G. Bhagavannarayana, S. Parthiban, S. Meenakshisundaram, J. Appl. Crystallogr. 39, 784–790 (2006)CrossRefGoogle Scholar
  20. 20.
    G. Bhagavannarayana, S. Kushwaha, J Appl. Crystallogr. 43, 154–162 (2010)CrossRefGoogle Scholar
  21. 21.
    S.K. Kushwaha, K.K. Maurya, D. Haranath, G. Bhagavannarayana, J Appl. Crystallogr. 44, 1054–1061 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi, S. Sudhakar, J. Alloy. Compd. 580, 270–275 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B 110, 21412–21415 (2006)CrossRefGoogle Scholar
  24. 24.
    L.D. DeLoach, S.A. Payne, L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron. 29, 1179–1191 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    M. Selvapandiyan, S. Sudhakar, P. Sundaramoorthi, J. Alloy. Compd. 523, 25–29 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi, S. Sudhakar, J. Alloy. Compd. 558, 34–38 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Muley, J. Electron. Mater. 43, 439–446 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, I. Yahia, Ceram. Int. (2018)Google Scholar
  29. 29.
    M. Shkir, V. Ganesh, S. AlFaify, A. Black, E. Dieguez, K.K. Maurya, Cryst. Growth Des. (2018)Google Scholar
  30. 30.
    M. Shkir, S. AlFaify, Sci Rep 7, 16091 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    P. Joshi, M. Cole, Appl. Phys. Lett. 77, 289 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, J. Cryst. Growth 208, 493–500 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    S. Selvakumar, J.P. Julius, S. Rajasekar, A. Ramanand, P. Sagayaraj, Mater. Chem. Phys. 89, 244–248 (2005)CrossRefGoogle Scholar
  34. 34.
    M.S. Devi, A. Arthi, K. Thamizharasan, Superlattices Microstruct. 73, 296–305 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    K. Muthu, G. Bhagavannarayana, S. Meenakshisundaram, J. Alloy. Compd. 548, 201–207 (2013)CrossRefGoogle Scholar
  36. 36.
    P.M. Ushasree, R. Jayavel, C. Subramanian, P. Ramasamy, J. Cryst. Growth 197, 216–220 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    P. Ushasree, R. Jayavel, C. Subramanian, P. Ramasamy, J. Cryst. Growth 197, 216–220 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    S. Moitra, T. Kar, Opt. Mater. 30, 508–512 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    M. Shkir, H. Abbas, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 172–176 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    M. Shakir, S. Kushawaha, K. Maurya, S. Kumar, M. Wahab, G. Bhagavannarayana, J. Appl. Crystallogr. 43, 491–497 (2010)CrossRefGoogle Scholar
  41. 41.
    C. Dong, J Appl. Crystallogr. 32, 838–838 (1999)CrossRefGoogle Scholar
  42. 42.
    V. Venkataramanan, M. Srinivasan, H. Bhat, J. Raman Spectrosc. 25, 805–811 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    C.N.R. Rao, (1974)Google Scholar
  44. 44.
    M. Shakir, B. Riscob, K. Maurya, V. Ganesh, M. Wahab, G. Bhagavannarayana, J. Cryst. Growth 312, 3171–3177 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    S. Bhandari, N. Sinha, G. Ray, B. Kumar, Chem. Phys. Lett. 591, 10–15 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    M. Rajasekar, K. Muthu, V. Meenatchi, C.K. Mahadevan, S.P. Meenakshisundaram, Optik Int. J. Light Electron Opt. 125, 710–713 (2014)CrossRefGoogle Scholar
  47. 47.
    B.S. Samuel, R. Krishnamurthy, R. Rajasekaran, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 526–532 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966)ADSCrossRefGoogle Scholar
  49. 49.
    J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)CrossRefGoogle Scholar
  50. 50.
    M. Shkir, H. Abbas, Z.R. Khan, J. Phys. Chem. Solids 73, 1309–1313 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    F. Urbach, Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  52. 52.
    M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Solid State Commun. 149, 2047–2049 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    M. Shkir, S. Aarya, R. Singh, M. Arora, G. Bhagavannarayana, T. Senguttuvan, Nanosci. Nanotechnol. Lett. 4, 405–408 (2012)CrossRefGoogle Scholar
  54. 54.
    M. Shkir, S. Alfaify, M. Ajmal Khan, E. Dieguez, J. Perles, J. Cryst. Growth 391, 104–110 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    M. Shkir, S. Muhammad, S. AlFaify, A. Irfan, I. Yahia, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 432–441 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    M. Shkir, H. Abbas, S. Kumar, G. Bhagavannarayana, S. AlFaify, J. Phys. Chem. Solids 75, 959–965 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    M. Shkir, Chalcogenide Lett. 8, 435–440 (2011)Google Scholar
  58. 58.
    M. Shkir, S. Muhammad, S. AlFaify, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 128–135 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    M. Shkir, B. Riscob, M. Hasmuddin, P. Singh, V. Ganesh, M. Wahab, E. Dieguez, G. Bhagavannarayana, Opt. Mater. 36, 675–681 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    S. Xu, G. Li, S. Chua, X. Wang, W. Wang, Appl. Phys. Lett. 72, 2451–2453 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    S. Kushwaha, K. Maurya, D. Haranath, G. Bhagavannarayana, J Appl. Crystallogr. 44, 1054–1061 (2011)CrossRefGoogle Scholar
  62. 62.
    S. Kushwaha, K. Maurya, N. Vijayan, A. Gupta, D. Haranath, B. Kumar, D. Kanjilal, G. Bhagavannarayana, Nuclear instruments and methods in physics research section b: beam interactions with materials and atoms, 338 (2014) 1–7Google Scholar
  63. 63.
    R.H. Rao, S. Kalainathan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 456–463 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    R. Shaikh, M. Anis, M. Shirsat, S. Hussaini, Optik Int. J. Light Electron Opt. 154, 435–440 (2018)CrossRefGoogle Scholar
  66. 66.
    G. Pabitha, R. Dhanasekaran, Opt. Laser Technol. 50, 150–154 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    P.S. Patil, Mohd. Shkir, S.R. Maidur, S. AlFaify, M. Arora, S.V. Rao, H. Abbas, Opt. Mater. 72, 427–435 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    M. Shkir, P. Patil, M. Arora, S. AlFaify, H. Algarni, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 445–456 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    P. Srinivasan, A.Y. Nooraldeen, T. Kanagasekaran, A. Dhinaa, P. Palanisamy, R. Gopalakrishnan, Laser Phys. 18, 790–793 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    S.P. Ramteke, M. Anis, M.S. Pandian, S. Kalainathan, M.I. Baig, P. Ramasamy, G.G. Muley, Opt. Laser Technol. 99, 197–202 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    S. Ramteke, M. Baig, M. Shkir, S. Kalainathan, M. Shirsat, G. Muley, M. Anis, Opt. Laser Technol. 104, 83–89 (2018)ADSCrossRefGoogle Scholar
  72. 72.
    S.R. Maidur, P.S. Patil, S.V. Rao, M. Shkir, S. Dharmaprakash, Opt. Laser Technol. 97, 219–228 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    Y.-D. Zhang, Z.-Y. Zhao, C.-B. Yao, L. Yang, J. Li, P. Yuan, Opt. Laser Technol. 58, 207–214 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    A. Mohd, B. MI, H. SS, S. Mohd, G. HA, @@ 27, 27801–027801 (2018)Google Scholar
  75. 75.
    M. Zidan, M. Al-Ktaifani, A. Allahham, Opt. Laser Technol. 90, 174–178 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    F. Träger, Springer handbook of lasers and optics, Springer, New York (2012)CrossRefGoogle Scholar
  77. 77.
    M. Sukumar, R.R. Babu, K. Ramamurthi, Solid State Sci. 51, 8–12 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    M. Sukumar, R. Ramesh Babu, K. Ramamurthi, Appl. Phys. B 121, 369–373 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    T.R. Kumar, R.J. Vijay, R. Jeyasekaran, S. Selvakumar, M.A. Arockiaraj, P. Sagayaraj, Opt. Mater. 33, 1654–1660 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    T. Thilak, M. Basheer Ahamed, G. Marudhu, G. Vinitha, Arab. J. Chem.Google Scholar
  81. 81.
    R.J. Mani, P. SelvarajanGoogle Scholar
  82. 82.
    R.J. Mani, P. Selvarajan, H.A. DevadossGoogle Scholar
  83. 83.
    C. Krishnan, P. Selvarajan, T.H. Freeda, J. Cryst. Growth 311, 141–146 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    S.G. Raj, G.R. Kumar, T. Raghavalu, P. Kumar, R. Mohan, R. Jayavel, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65, 1021–1024 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    G.R. Kumar, S.G. Raj, R. Sankar, R. Mohan, S. Pandi, R. Jayavel, J. Cryst. Growth 267, 213–217 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    V. Ganesh, C. Snehalatha Reddy, M. Shakir, M. Wahab, G. Bhagavannarayana, K. Kishan Rao, Phys. B 406, 259–264 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    H.-J. de Jager, L.C. Prinsloo, Thermochim. Acta 376, 187–196 (2001)CrossRefGoogle Scholar
  88. 88.
    O. Kaygili, S.V. Dorozhkin, T. Ates, N.C. Gursoy, S. Keser, F. Yakuphanoglu, A.B. Selçuk, Mater. Sci. Eng. C 47, 333–338 (2015)CrossRefGoogle Scholar
  89. 89.
    M. Shkir, M. Kilany, I.S. Yahia, Ceram. Int. 43, 14923–14931 (2017)CrossRefGoogle Scholar
  90. 90.
    M. Packiya raj, S. Ravi Kumar, D. Sivavishnu, T. Kubendiran, A. Anbarasi, S. Allen Moses, Cryst. Res. Technol 53 (2018) 1700271CrossRefGoogle Scholar
  91. 91.
    A.A. Latha, M. Anbuchezhiyan, C.C. Kanakam, K. Selvarani, Mater. Sci. Pol. 35, 140–150 (2017)CrossRefGoogle Scholar
  92. 92.
    O. Kaygili, S. Keser, T. Ates, A.A. Al-Ghamdi, F. Yakuphanoglu, Powder Technol. 245, 1–6 (2013)CrossRefGoogle Scholar
  93. 93.
    W. Lee, J.F. Liu, A. Nowick, Phys. Rev. Lett. 67, 1559 (1991)ADSCrossRefGoogle Scholar
  94. 94.
    V. Ganesh, K. Rao, Indian J. Phys. 82, 1–8 (2008)Google Scholar
  95. 95.
    M. Shakir, V. Ganesh, M. Wahab, G. Bhagavannarayana, K.K. Rao, Mater. Sci. Eng. B 172, 9–14 (2010)CrossRefGoogle Scholar
  96. 96.
    M. Shkir, I.S. Yahia, A.M.A. Al-Qahtani, Mater. Chem. Phys. 184, 12–22 (2016)CrossRefGoogle Scholar
  97. 97.
    A. Iurchenko, J. Borc, K. Sangwal, A. Voronov, Mater. Chem. Phys. 170, 276–284 (2016)CrossRefGoogle Scholar
  98. 98.
    M. Shkir, V. Ganesh, S. AlFaify, A. Black, E. Dieguez, G. Bhagavannarayana, J. Alloy. Compd. 686, 438–446 (2016)CrossRefGoogle Scholar
  99. 99.
    P. Shekar, D. Nagaraju, V. Ganesh, K.K. Rao, Cryst. Res. Technol. 44, 652–656 (2009)CrossRefGoogle Scholar
  100. 100.
    K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)CrossRefGoogle Scholar
  101. 101.
    Mohd. Shkir, V. Ganesh, I.S. Yahia, Hisham S.M. Abd-Rabboh, S. AlFaify, J. Phys. Chem. Solid. 123, 336–343 (2018)ADSCrossRefGoogle Scholar
  102. 102.
    E. Onitsch, Mikroskopie 2, 131–151 (1947)Google Scholar
  103. 103.
    C. Hays, E. Kendall, Metallography, 6 (1973) 275–282CrossRefGoogle Scholar
  104. 104.
    K. Sangwal, A. Kłos, Cryst. Res. Technol. 40, 429–438 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Physics and ElectronicsMaulana Azad College of Arts, Science and CommerceAurangabadIndia

Personalised recommendations