Applied Physics B

, 124:189 | Cite as

Effect of moisture on the adsorption of ammonia

  • Olavi Vaittinen
  • Markus MetsäläEmail author
  • Lauri Halonen
  • Stefan Persijn
  • Daiana Leuenberger
  • Bernhard Niederhauser


The effect of moisture on the adsorption of ammonia was systematically studied using different surface materials and humidity levels. The experimental water amount fractions varied between 6 and 18,000 µmol mol−1, and the ammonia amount fraction was 400 nmol mol−1. The investigated materials included plain 316L stainless steel and stainless steel cured with Dursan, SilcoNert 2000 and halocarbon wax coatings. Furthermore, Teflon (PTFE) and polyvinylidene difluoride (PVDF) polymer surfaces were studied. Dynamically diluted ammonia, test tubes prepared with the investigated materials, a commercial ammonia analyzer based on cavity ring-down spectroscopy, and a commercial dew-point transmitter were employed. The adsorption was assessed quantitatively using continuous flow conditions and real-time monitoring of the adsorption process. The ammonia adsorption was found to increase substantially in dry conditions for all the studied materials except PVDF. The increase was largest for plain stainless steel which was the most adsorbing material. The coatings applied on stainless steel decreased the adsorption significantly in dry conditions. Polymers PVDF and PTFE were the least-adsorbing materials. In water amount fractions between 1000 and 10,000 µmol mol−1, the ammonia adsorption was at its lowest. The adsorption increased again above 1% humidity levels.



This work is part of European Metrology Research Programme (EMRP) Joint Research Project (JRP) “Metrology for Ammonia in Ambient Air”—MetNH3 ( O. V. was employed as a Research Excellency Grant (REG) beneficiary in the Project. The research was carried out with funding by EURAMET and the European Union. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. SilcoTek Corporation is thanked for supplying the SilcoNert 2000 and Dursan-coated stainless steel test tubes and for providing an additional information about the coatings. Dr. Hannu Sairanen from VTT MIKES Metrology is acknowledged for verifying the appropriate operation of the Vaisala dew-point transmitter. Dr Raimo Timonen is thanked for providing a prepared halocarbon wax solution. Funding was provided by European Association of National Metrology Institutes.


  1. 1.
    M.A. Sutton, J.W. Erisman, F. Dentener, D. Möller, Environ. Pollut. 156, 583 (2008)CrossRefGoogle Scholar
  2. 2.
    B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B 107, 666 (2005)CrossRefGoogle Scholar
  3. 3.
    K. von Bobrutzki, C.F. Braban, D. Famulari, D.S.K. Jones, T. Blackall, T.E.L. Smith, M. Blom, H. Coe, M. Callagher, M. Ghalaieny, M.R. McGillen, C.J. Percival, J.D. Whitehead, R. Ellis, J. Murphy, A. Mohacsi, A. Pogány, H. Junninen, S. Rantanen, M.A. Sutton, E. Nemitz: Atmos. Meas. Tech. 3, 91 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Pogány, D. Balslev-Harder, C.F. Braban, N. Cassidy, V. Ebert, V. Ferracci, T. Hieta, D. Leuenberger, N. Lűttschwager, N. Martin, C. Pascale, C. Tiebe, M.M. Twigg, O. Vaittinen, J. van Wijk, K. Wirtz, B. Niederhauser: Meas. Sci. Technol. 27, 115012 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Handbook of Stainless Steel (Outokumpu Oyj, Sandvikens Tryckeri AB, 2013)Google Scholar
  6. 6.
    S. Tardio, M.-L. Abel, R.H. Carr, J.E. Castle, J.F. Watts, J. Vac. Sci. Technol. A 33, 05E122 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Yamamoto, T. Kendelewicz, J.T. Newberg, G. Ketteler, D.E. Starr, E.R. Mysak, K.J. Andersson, H. Ogasawara, H. Bluhm, M. Salmeron, G.E. Brown, A. Jr, Nilsson, J. Phys. Chem. C 114, 2256 (2010)CrossRefGoogle Scholar
  8. 8.
    M.H.M. Ahmed, X. Torrelles, J.P.W. Treacy, H. Hussain, C. Nicklin, P.L. Wincott, D.J. Vaughan, G. Thornton, R. Lindsay, J. Phys. Chem. C 119, 21426 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Leygraf, in Corrosion Mechanisms in Theory and Practice, 3rd edn., ed. by P. Marcus (CRC Press, Boca Raton, 2012), p. 675Google Scholar
  10. 10.
    C.L. Wang, B. Zhou, P. Xiu, H.P. Fang, J. Phys. Chem. C 115, 3018 (2011)CrossRefGoogle Scholar
  11. 11.
    O. Vaittinen, M. Metsälä, S. Persijn, M. Vainio, L. Halonen, Appl. Phys. B 115, 185 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    A. Schmohl, A. Miklos, P. Hess, Appl. Opt. 40, 2571 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Ellis, J.G. Murphy, E. Pattey, R. von Haarlem, J.M. O’Brien, S.C. Herndon, Atmos. Meas. Tech. 3, 397 (2010)CrossRefGoogle Scholar
  14. 14.
    J.D. Whitehead, M. Twigg, D. Famulari, E. Nemitz, M.A. Sutton, M.W. Gallagher, D. Fowler, Environ. Sci. Technol. 42, 2041 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    G. Picarro, Analyzer for NH3, User’s Guide (Picarro Inc., Sunnyvale, 2010)Google Scholar
  16. 16.
    R.J. Yokelson, T.J. Christian, I.T. Bertschi, W.M. Hao, J. Geophys. Res. 108, 4649 (2003)CrossRefGoogle Scholar
  17. 17.
    Halocarbon Products Corporation., Accessed 21 April 2018
  18. 18.
    C.W. Kammeyer, D.R. Whitman, J. Chem. Phys. 56, 4419 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  2. 2.VSLDelftThe Netherlands
  3. 3.Federal Institute of Metrology (METAS)Bern-WabernSwitzerland
  4. 4.Inspector Sec OyVantaaFinland
  5. 5.Federal Office for the Environment FOEN, Air Pollution Control and Chemicals DivisionBernSwitzerland

Personalised recommendations