Advertisement

Applied Physics B

, 124:179 | Cite as

Efficient Ho:YAP laser dual end-pumped by a laser diode at 1.91 µm in a wing-pumping scheme

  • Xiaoming Duan
  • Linjun Li
  • Yingjie Shen
  • Baoquan Yao
Article
  • 73 Downloads

Abstract

We demonstrated a first continuous-wave and acousto-optical Q-switched Ho:YAP laser pumped by fiber-coupled laser diode at 1.91 µm. With a dual-end wing-pumping scheme, a maximum continuous-wave output power of 10.5 W at 2.1 µm and a slope efficiency of 53.2% were obtained when the incident LD power was 25.6 W, while diode-to-Ho conversion efficiency reached up to 41.0%. The Q-switched Ho:YAP laser was investigated for different pulse repetition frequencies from 3 to 20 kHz. The maximum average output power of 9.8 W and maximum pulse energy of 2.7 mJ were achieved at pulse repetition frequencies of 20 and 3 kHz, respectively. In addition, we demonstrated an efficient mid-infrared laser based on a diode-Ho-ZGP architecture for the first time. With a pulse repetition frequency of 3 kHz and an incident Ho pump power of 8.2 W, the average output power of 4.8 W and slope efficiency of 61.0% were reached in mid-infrared ZGP-OPO.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (51572053, 61378029 and 61775053), Science Foundation for Outstanding Youths of Heilongjiang Province (JC2016016), Science Foundation for Youths of Heilongjiang Province (QC2017078), and Fundamental Research funds for the Provincial Universities (Grant no. WL17B14).

References

  1. 1.
    G.J. Koch, J.Y. Beyon, B.W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M.J. Kavaya, U.N. Singh, Opt. Eng. 46, 116201 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    T. Bach, T.R.W. Herrmann, C. Cellarius, A.J. Gross, World J. Urol. 25, 263 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Schellhorn, G. Spindler, M. Eichhorn, Opt. Express 26, 1402–1410 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Lai, P.B. Phua, R.F. Wu, Y.L. Lim, E. Lau, S.W. Toh, B.T. Toh, A. Chng, Opt. Lett. 25, 1591 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, P. Moulton, Proc. SPIE 7580, 758016 (2010)CrossRefGoogle Scholar
  6. 6.
    X.D. Mu, H. Meissner, H.C. Lee, Proc. SPIE 7686, 76860T (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Shen, B. Yao, X. Duan, G. Zhu, W. Wang, Y. Ju, Y. Wang, Opt. Lett. 37, 3558 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, G.W. Turner, IEEE J. Quantum Electron. 31, 1603 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    K. Scholle, P. Fuhrberg, Proceedings of CLEO, paper CTuAA1 (2008)Google Scholar
  10. 10.
    S. Lamrini, P. Koopmann, M. Schafer, K. Scholle, P. Fuhrberg, Appl. Phys. B 106, 315 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, Opt. Lett. 37, 515 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg, Opt. Lett. 38, 1948 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    V. Jambunathan, X. Mateos, M.C. Pujol, J.J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, Appl. Phys. Express 4, 072601 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    G.A. Newburgh, M. Dubinskii, Proc. SPIE 8039, 803905 (2011)CrossRefGoogle Scholar
  15. 15.
    G.A. Newburgh, A. Word-Daniels, A. Michael, L.D. Merkle, A. Ikesue, M. Dubinskii, Opt. Express 19, 3604 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Berrou, T. Ibach, M. Eichhorn, Appl. Phys. B 120, 105 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    E. Ji, Q. Liu, M. Nie, X. Cao, X. Fu, M. Gong, Opt. Lett. 41, 1237 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    E. Ji, Q. Liu, Y. Shen, M. Nie, X. Fu, IEEE Photonics Technol. Lett. 29, 1695 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Q. Dong, G. Zhao, D. Cao, B. Yao, X. Yang, Z. Yu, J. Phys. D Appl. Phys. 42, 045114 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    B. Yao, X. Duan, L. Zheng, Y. Ju, Y. Wang, G. Zhao, Q. Dong, Opt. Express 16, 14668 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Zhao, F. Wang, D.Y. Shen, Appl. Opt. 54, 1594 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    X. Duan, B. Yao, X. Yang, L. Li, T. Wang, Y. Ju, Y. Wang, G. Zhao, Q. Dong, Opt. Express 17, 4427 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    X.M. Duan, B.Q. Yao, X.T. Yang, T.H. Wang, Y.L. Ju, Y.Z. Wang, Appl. Phys. B 96, 379 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Cui, X.M. Duan, B.Q. Yao, J. Li, X.L. Li, T.Y. Dai, C.Y. Li, Y.B. Pan, Laser Phys. Lett. 12, 105002 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    T. Yu, X. Ye, Z. Yang, X. Chen, W. Xia, J. Zhang, W. Zhang, J. Chen, J. Si, W. Chen: Proc. SPIE 10173, 101731M (2017)CrossRefGoogle Scholar
  26. 26.
    X.M. Duan, W.M. Lin, Z. Cui, B.Q. Yao, H. Li, T.Y. Dai, Appl. Phys. B 122, 88 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Key Laboratory of Tunable Laser TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Heilongjiang Province Key Laboratory of Optoelectronics and Laser TechnologyHeilongjiang Institute of TechnologyHarbinChina
  3. 3.School of Opto-Electronic Information Science and TechnologyYantai UniversityYantaiChina

Personalised recommendations