Advertisement

Applied Physics B

, 124:185 | Cite as

Ultrathin dual-band polarization angle independent 90° polarization rotator with giant optical activity based on planar chiral metamaterial

  • Jingcheng Zhao
  • Yongzhi Cheng
Article
  • 64 Downloads

Abstract

An ultrathin dual-band planar chiral metamaterial (CMM) with giant optical activity using Fermat’s Spiral structure (FSs) was proposed, which could yield a near polarization angle independent 90° rotation characteristic. The proposed CMM can convert an incident linear polarization (y-/x-polarized) wave into its cross-polarization (x-/y-polarized) or experience a near 90° polarization rotation at 4.67 and 8.51 GHz, respectively. The experiment results are in agreement well with numerical simulation. The surface current distributions of unit-cell structure of the proposed CMM were analyzed to illustrate the physics mechanism of this giant optical activity with 90° polarization rotation. Good performances and compact design of the CMM suggest a promising application in 90° polarization rotator that need to be integrated with other compact devices.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61605147) and the Natural Science Foundation of Hubei province (Grant No. 2017CFB588).

References

  1. 1.
    J.B. Pendry, A chiral route to negative refraction. Science 306(19), 1353–1355 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    B.N. Wang, J.F. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Chiral metamaterials: simulations and experiments. J. Opt. A-Pure Appl. Opt. 11, 114003 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Metamaterial with negative index due to chirality. Phys. Rev. B 79(3), 035407 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality. Phys. Rev. B 79(12), 121104 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.B. Alici, E. Colak, H. Caglayan, E. Ozbay, C.M. Soukoulis, Chiral metamaterials with negative refractive index based on four “U” split ring resonators. Appl. Phys. Lett. 97(8), 081901 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35(10), 1593–1593 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y.Z. Cheng, Y. Nie, R.Z. Gong, Giant optical activity and negative refractive index using complementary U-shaped structure assembly. Prog. Electromagn. Res. M 25, 239–253 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Huang, Z. Yao, Q. Wang, F. Hu, X. Xu, Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region. Plasmonics 10(4), 1005–1011 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Ye, S. He, 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett. 96, 203501 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.Z. Cheng, Y. Nie, L. Wu, R.Z. Gong, Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators. Prog. Electromagn. Res. 138, 421–432 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.Z. Cheng, Y.L. Yang, Y.J. Zhou, Z. Zhang, X.S. Mao, R.Z. Gong, Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves. J. Mod. Opt. 63(17), 1675–1680 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    B. Yan, K. Zhong, M. Ma, Y. Li, C. Sui, J. Wang, Y. Shi, Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region. Opt. Commun. 383, 57–63 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    X. Ma, C. Huang, M. Pu, W. Pan, Y. Wang, X. Luo, Circular dichroism and optical rotation in twisted Y-Shaped chiral metamaterial. Appl. Phys. Exp. 6, 022001 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. TÄunnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104, 253902 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys. Rev. B 85, 195131 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F. Dincer, C. Sabah, M. Karaaslan, E. Unal, M. Bakir, U. Erdiven, Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial. Prog. Electromagn. Res. 140, 227–239 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators Appl. Phys. Lett. 99(22), 221907 (2011)Google Scholar
  18. 18.
    Y.Z. Cheng, Y. Nie, X. Wang, R.Z. Gong, An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator. Appl. Phys. A Mater. Sci. Process. 111(1), 209–215 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y.Z. Cheng, R.Z. Gong, L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves. Plasmonics 12(4), 1113–1120 (2017)CrossRefGoogle Scholar
  20. 20.
    J.Y. Tang, Z.Y. Xiao, K.K. Xu, X.L. Ma, D. Liu, Z. Wang, Cross polarization conversion based on a new chiral spiral slot structure in THz region. Opt. Quant. Electron. 48, 111 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, Z. Hong, Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region. Opt. Commun. 383, 310–315 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    X.L. Ma, Z.Y. Xiao, D. Liu, Dual-band cross polarization converter in bi layered complementary chiral metamaterial. J. Mod. Opt. 63(10), 937–940 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Multiband circular polarizer using planar spiral metamaterial structure. Opt. Express 20, 16050 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    L. Wu, Z.Y. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, X. Yuan, Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl. Phys. A 116(2), 643–648 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Y.Z. Cheng, C.J. Wu, Z.Z. Cheng, R.Z. Gong, Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator. Prog. Electromagn. Res. 155, 105–113 (2016)CrossRefGoogle Scholar
  26. 26.
    I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J. Vitanen, Electromagnetic Waves in Chiral and Bi Isotropic Media (Artech House, Boston, 1994)Google Scholar
  27. 27.
    Z.J. Wang, F. Cheng, T. Winsor, Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.Z. Cheng, M.L. Huang, H.R. Chen, Y.J. Zhou, X. Mao, R.Z. Gong, Influence of the geometry of a gammadion stereo-structure chiral metamaterial on optical properties. J. Mod. Opt. 64(15), 1487–1494 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    E.L. Barr, D.R. Ana, B. Tremain, J. Carbonell, S.D. José, E. Hendry, A.P. Hibbins, On the origin of pure optical rotation in twisted-cross metamaterials. Sci. Rep. 6, 30307 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    R.H. Fan, Y. Zhou, X.P. Ren, R.W. Peng, S.C. Jiang, D.H. Xu, X. Xiong, X.R. Huang, M. Wang, Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater. 27, 1201–1206 (2015)CrossRefGoogle Scholar
  31. 31.
    L.Q. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, A perfect metamaterial polarization rotator. Appl. Phys. Lett. 103, 171107 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    K. Song, X. Zhao, Y. Liu, Q. Fu, C. Luo, A frequency-tunable 90-polarization rotation device using composite chiral metamaterials. Appl. Phys. Lett. 103, 101908 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    H. Shi, A. Zhang, S. Zheng, J. Li, Y. Jiang, Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators. Appl. Phys. Lett. 104(3), 034102 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Gao, F. Gao, Y. Zhang, B. Zhang, Complementary structure for designer localized surface plasmons. Appl. Phys. Lett. 107, 191103 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    P.A. Huidobro, X.P. Shen, J. Cuerda, E. Moreno, L.M. Moreno, T.J. Cui., F.J. Garcia-Vidal, J.B. Pendry, Magnetic localized surface plasmons. Phys. Rev. X 4(2), 021003 (2014)Google Scholar
  36. 36.
    N.F. Yogesh, T. Fu, F. Lan, Z. Ouyang, Far-infrared circular polarization and polarization filtering based on fermat’s spiral chiral metamaterial. IEEE Photon. J. 7(3), 1–12 (2015)CrossRefGoogle Scholar
  37. 37.
    F. Fang, Y.Z. Cheng, H.H. Liao, Giant optical activity and circular dichroism in the terahertz region based on bi-layer Y-shaped chiral metamaterial. Optik 125, 6067–6070 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    H.X. Xu, G.M. Wang, M.Q. Qi, T. Cai, T.J. Cui, Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. Opt. Express 210(21), 24912–24921 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Y.Z. Cheng, Y. Nie, Z.Z. Cheng, L. Wu, X. Wang, R.Z. Gong, Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial. Prog. Electromag. Res. 160, 89–101 (2017)CrossRefGoogle Scholar
  40. 40.
    Y.Z. Cheng, Y. Nie, Z.Z. Cheng, X. Wang, R.Z. Gong, Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator. Appl. Phys. B 116(1), 129–134 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Y.Z. Cheng, H.R. Chen, J.C. Cheng, X.S. Mao, Z.Z. Cheng, Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves. Opt. Mater. Express 8(5), 1399–1409 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringBeihang UniversityBeijingPeople’s Republic of China
  2. 2.School of information Science and EngineeringWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations