Advertisement

Applied Physics B

, 124:176 | Cite as

Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence

  • Dajun Liu
  • Yaochuan Wang
Article
  • 47 Downloads

Abstract

A new kind beam called the random electromagnetic multi-Gaussian Schell-model (REMGSM) vortex beam has been introduced. Based on the Huygens–Fresnel principle, the elements of the cross-spectral density matrix of the REMGSM vortex beam propagation in oceanic turbulence have been derived. The average intensity and spectral degree of polarization properties of the REMGSM vortex beam propagating in oceanic turbulence are illustrated and analyzed using numerical examples. The results show that the REMGSM vortex beam propagating in stronger oceanic turbulence will evolve into flat-topped beam and Gaussian-like beam more rapidly as the propagation distance increases.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (11604038, 11404048), Natural Science Foundation of Liaoning Province (201602062, 201602061) and the Fundamental Research Funds for the Central Universities (3132018235, 3132018236).

References

  1. 1.
    V.V. Nikishov, V.I. Nikishov, Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 27, 82–98 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    O. Korotkova, N. Farwell, Effect of oceanic turbulence on polarization of stochastic beams. Opt. Commun. 284, 1740–1746 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M.M. Tang, D.M. Zhao, Propagation of radially polarized beams in the oceanic turbulence. Appl. Phys. B-Lasers O 111, 665–670 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J. Xu, D.M. Zhao, Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence. Opt. Laser Technol. 57, 189–193 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhou, Q. Chen, D.M. Zhao, Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence. Appl. Phys. B-Lasers O 114, 475–482 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Y.P. Huang, B. Zhang, Z.H. Gao, G.P. Zhao, Z.C. Duan, Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 22, 17723–17734 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Liu, Y.C. Wang, H.M. Yin, Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Appl. Opt. 54, 10510–10516 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    D. Liu, Y. Wang, G. Wang, X. Luo, H. Yin, Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Phys. 27, 016001 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Liu, L. Chen, Y.C. Wang, G.Q. Wang, H.M. Yin, Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence. Optik 127, 6961–6969 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D. Liu, H. Yin, G. Wang, Y. Wang, Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence. Appl. Opt. 56, 8785–8792 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Y.P. Huang, P. Huang, F.H. Wang, G.P. Zhao, A.P. Zeng, The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    L. Lu, Z.Q. Wang, J.H. Zhang, P.F. Zhang, C.H. Qiao, C.Y. Fan, X.L. Ji, Average intensity of M x N Gaussian array beams in oceanic turbulence. Appl. Opt. 54, 7500–7507 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Tang, D.M. Zhao, Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    L. Lu, P.F. Zhang, C.Y. Fan, C.H. Qiao, Influence of oceanic turbulence on propagation of a radial Gaussian beam array. Opt. Express 23, 2827–2836 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M. Yousefi, F.D. Kashani, A. Mashal, Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence. Laser Phys. 27, 026202 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    D. Liu, Y. Wang, Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence. Opt. Laser Technol. 103, 33–41 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Baykal, Fourth-order mutual coherence function in oceanic turbulence. Appl. Opt. 55, 2976–2979 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Baykal, Higher order mode laser beam intensity fluctuations in strong oceanic turbulence. Opt. Commun. 390, 72–75 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y.M. Dong, L.N. Guo, C.H. Liang, F. Wang, Y.J. Cai, Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence. J. Opt. Soc. Am. A 32, 894–901 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Liu, Y.C. Wang, G.Q. Wang, H.M. Yin, J.R. Wang, The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam. Opt. Laser Technol. 82, 76–81 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    D.J. Liu, Y.C. Wang, Average intensity of a Lorentz beam in oceanic turbulence. Optik—Int. J. Light Electron Opt. 144, 76–85 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Liu, Y. Wang, X. Luo, G. Wang, H. Yin, Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence. J. Mod. Opt. 64, 1579–1587 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Liu, G. Wang, Y. Wang, Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence. Opt. Laser Technol. 98, 309–317 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    H.D.A. Jeffrey, Handbook of Mathematical Formulas and Integrals, 4th edn. (Academic Press Inc, Cambridge, 2008)zbMATHGoogle Scholar
  25. 25.
    E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Tang, D. Zhao, Propagation of multi-Gaussian Schell-model vortex beams in isotropic random media. Opt. Express 23, 32766–32776 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceDalian Maritime UniversityDalianChina

Personalised recommendations