Advertisement

Applied Physics B

, 124:183 | Cite as

Evolution behavior of mixed screw-edge dislocations propagating through atmospheric turbulence

  • Penghui Gao
  • Lu Bai
  • Zhuoyun Wang
  • Jinlu Li
  • Lixin Guo
Article

Abstract

In this paper we studied the evolution of an optical vortex and an edge dislocation in atmospheric turbulence, It is shown that when mixed screw-edge dislocations beams propagate through atmospheric turbulence, the optical vortex always exists, and the edge dislocation evolves into a pair of optical vortices; when the transmission distance becomes large enough, the pair of optical vortices annihilates. The bigger the refraction index structure constant and off-axis distance of the edge dislocation, the smaller the annihilation distance of the pair of optical vortices. Especially, mixed screw-edge dislocations evolve into two optical vortices with same topological charge when the off-axis distance of the edge dislocation is zero.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61875156, 61475123, 61431010. And it was also partly supported by the 111 Project (B17035).

References

  1. 1.
    J.F. Nye, M.V. Berry, Proc. R. Soc. A Math. Phys. Sci. 336, 165 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    I.V. Basistiy, M.S. Soskin, M.V. Vasnetsov, Opt. Commun. 119, 604 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    L. Allen, M.W. Beijersbergen, R.J. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Soskin, M.V. Vasnetsov, Prog. Opt. 42, 219 (2001)CrossRefGoogle Scholar
  5. 5.
    H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, S. Wen, Opt. Commun. 393, 49 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    G. Cipparrone, R.J. Hernandez, P. Pagliusi, C. Provenzano, Phys. Rev. A 84, 015802 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Mondal, B. Deb, S. Majumder, Phys. Rev. A 92, 043603 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    D.G. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    R. Paez-Lopez, U. Ruiz, V. Arrizon, R. Ramos-Garcia, Opt. Lett. 41, 4138 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    R.J. Voogd, M. Singh, S.F. Pereira, A.S.V.D. Nes, J.J.M. Braat, Proc. SPIE 5380, 387 (2004)Google Scholar
  11. 11.
    G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, S. Frankearnold, Opt. Express 12, 5448 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wang, N. Zhang, X.C. Yuan, Opt. Express 19, 482 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M. Luo, Q. Chen, L. Hua, D. Zhao, Phys. Lett. A 378, 308 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L. Guo, Opt. Eng. 53, 056107 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    K.C. Zhu, X.Y. Li, X.J. Zheng, H.Q. Tang, Appl. Phys. B 98, 567 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    N.R. Heckenberg, R. Mcduff, C.P. Smith, A.G. White, Opt. Lett. 17, 221 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Kovalev, V.V. Kotlyar, Opt. Lett. 33, 189 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A. Longman, R. Fedosejevs, Opt. Express 25, 17382 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    J. Chen, X. Liu, J. Yu, Y. Cai, Appl. Phys. B 122, 201 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    K. Cheng, G. Lu, X. Zhong, Appl. Phys. B 123, 60 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Chen, S. Huang, W. Shao, X. Liu, Appl. Phys. B 123, 215 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    K. Qu, Q. Jia, N.J. Fisch, Phys. Rev. E 96, 053207 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    X. Zhang, H. Wang, Opt. Commun. 403, 358 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    S. Fu, C. Gao, Photon. Res. 4, B1 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Zhi, R. Tao, P. Zhou, Y. Ma, W. Wu, X. Wang, L. Si, Opt. Commun. 387, 157 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Molinaterriza, E.M. Wright, L. Torner, Opt. Lett. 26, 163 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    F.S. Roux, J. Opt. Soc. Am. B 21, 664 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    D.V. Petrov, Opt. Quant. Electron. 34, 759 (2002)CrossRefGoogle Scholar
  29. 29.
    V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Phys. Rev. A 95, 053805 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    L.C. Andrews, R.L. Phillips, Laser beam propagation through random media (SPIE, Bellingham, 2005)CrossRefGoogle Scholar
  31. 31.
    S.C.H. Wang, M.A. Plonus, J. Opt. Soc. Am. 69, 1297 (1979)ADSCrossRefGoogle Scholar
  32. 32.
    I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products (Acadenic Press, New York, 2007)zbMATHGoogle Scholar
  33. 33.
    L. Mandel, E. Wolf, P. Meystre, Optical coherence and quantum optics (Cambridge University, Cambridge, 1995)CrossRefGoogle Scholar
  34. 34.
    G. Gbur, T.D. Visser, Opt. Commun. 222, 117 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    I.I. Freund, N. Shvartsman, Phys. Rev. A 50, 5164 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Penghui Gao
    • 1
  • Lu Bai
    • 1
    • 2
  • Zhuoyun Wang
    • 3
  • Jinlu Li
    • 1
  • Lixin Guo
    • 1
    • 2
  1. 1.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina
  2. 2.Collaborative Innovation Center of Information Sensing and Understanding at Xidian UniversityXi’anChina
  3. 3.Department of PhysicsNanjing Normal UniversityNanjingChina

Personalised recommendations