Advertisement

Applied Physics B

, 124:174 | Cite as

High-order harmonic generation in H2+ via multicolor beam superposition: barrier suppression ionization regime

  • S. Sarikhani
  • S. Batebi
Article
  • 67 Downloads

Abstract

Generation of high-order harmonics (HOHs) and attosecond pulses in the barrier suppression ionization regime for a target of hydrogen molecular ion, \({\text{H}}_{2}^{+}\), with large inter nuclear distance is introduced in this work. Some broadband femtosecon laser pulses are designed based on multicolor beam superposition method in order to interact with \({\text{H}}_{2}^{+}\). Behavioral study of harmonics cutoff, attosecond pulse widths and intensities, along with the maximum ionization intensity with respect to the spectral width of driving pulses was carried out. Molecular orbitals in this study are estimated via the linear combination of atomic orbital approximation, and temporal variations of these orbitals are studied in the various ionization regimes. It is seen in this work that although the cutoff harmonic is increased by the driving pulse intensity, but it is insensitive to the spectral driving pulsewidth. This study showed that intensities of the generated attosecond pulses gradually decreased by increasing the bandwidth of the driving laser pulse, but the duration of them is shown to be insensitive in this respect.

References

  1. 1.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    P.M. Paul, E.S. Toma, P. Berger, G. Mullot, F. Auge, Ph Balkou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hentshel, R. Kienberger, Ch Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    J.L. Krausz, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    T. Zuo, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 48, 3837–3844 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lewenstein, Ph Balkou, M.Y. Ivanov, A.L. Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  9. 9.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)CrossRefGoogle Scholar
  10. 10.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Bandrauk, J. Manz, K.-J. Yuan, Laser Phys. 19, 1559 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nat. Lett 453, 757 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)CrossRefGoogle Scholar
  14. 14.
    O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J.M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane, O. Cohen, Nat. Photon. (2014).  https://doi.org/10.1038/NPHOTON.2014.293 CrossRefGoogle Scholar
  15. 15.
    T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D.D. Hickstein, D. Zusin, C. Gentry, F.J. Dollar, C.A. Mancuso, C.W. Hogle, O. Kfir, D. Legut, K. Carva, J.L. Ellis, K.M. Dorney, C. Chen, O.G. Shpyrko, E.E. Fullerton, O. Cohen, P.M. Oppeneer, D.B. Miloševic, A. Becker, A.A. Jaron-Becker, T. Popmintchev, M.M. Murnane, H.C. Capteyn, PNAS 112, 14206 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    H. Xu, Z. Li, F. He, X. Wang, A. Atia-Tul-Noor, D. Kielpinski, R.T. Sang, I.V. Litvinyuk, Nat. Commun. (2017).  https://doi.org/10.1038/ncomms15849 CrossRefGoogle Scholar
  17. 17.
    M. Mohebbi, S. Batebi, Opt. Commun. 296, 113 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    F. Hosseinzadeh, S. Batebi, M.Q. Soofi, J. Exp. Theor. Phys. 124, 379 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    S. Sarikhani, S. Batebi, Appl. Phys. B Lasers Opt. 123, 230 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    D.B. Milosevic, J. Opt. Soc. Am. B 23, 308 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nisoli, P. Decleva, F. Calegari, A. Palacios, F. Martin, Chem. Rev. (2017).  https://doi.org/10.1021/acs.chemrev.6b00453 CrossRefGoogle Scholar
  22. 22.
    S. Chelkowski, C. Foisy, A.D. Bandrauk, Phys. Rev. A 57, 1176 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    M. Lein, N. Hay, R. Velotta, J.P. Marangos, P.L. Knight, Phys. Rev. Lett. 88, 183903 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    H. Sabzyan, M. Vafaee, Phys. Rev. A 71, 063404 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K. Nasiri Avanaki, D.A. Telnov, S.-I. Chu, Phys. Rev. A 90, 033425 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    F. He, C. Ruiz, A. Becker, Phys. Rev. Lett. 99, 083009 (2007)ADSGoogle Scholar
  27. 27.
    N.-T. Nguyen, V.-H. Hoang, V.-H. Le, Phys. Rev. A 88, 023824 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Telnov, J. Heslar, Shih-I. Chu, Phys. Rev. A 90, 063412 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    C. Yu, H. He, Y. Wang, Q. Shi, Y. Zhangand, R. Lu, J. Phys. B At. Mol. Opt. Phys. 47, 055601 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D.A. Telnov, J. Heslar, Shih-I. Chu, Phys. Rev. A 95, 043425 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    A.D. Bandrauk, H.Z. Lu, Phys. Rev. A 73, 013412 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    K. Liu, W. Hong, Q. Zhang, P. Lu, Opt. Express 19, 26359 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    K. Liu, Q. Zhang, P. Lu, Phys. Rev. A 86, 033410 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    L. Feng, Phys. Rev. A 92, 053832 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    L.-Q. Feng, W.-L. Li, H. Liu, Ann. Phys. 529, 1700093 (2017)CrossRefGoogle Scholar
  36. 36.
    H. Ahmadi, A. Maghari, H. Sabzyan, A.R. Niknam, M. Vafaee, Phys. Rev. A 90, 043411 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    V.T. Platonenko, A.F. Sterjantov, V.V. Strelkov, Laser Phys. 13, 443 (2003)Google Scholar
  38. 38.
    R.-F. Lu, H.-X. He, Y.-H. Guo, K.-L. Han, J. Phys. B At. Mol. Opt. Phys. 42, 225601 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    L. Feng, T. Chu, Phys. Rev. A 84, 053853 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    H. Sabzyan, S.H. Ahmadi, M. Vafaee, J. Phys. B 47, 105601 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    X.M. Tong, Z.X. Zhao, C.D. Lin, Phys. Rev. A 66, 033402 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Y.H. Lai, J. Xu, U.B. Szafruga, B.K. Talbert, X. Gong, K. Zhang, H. Fuest, M.F. Kling, C.I. Blaga, P. Agostini, L.F. DiMauro, Phys. Rev. A 96, 063417 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    P. Moreno, L. Plaja, V. Malyshev, L. Roso, Phys. Rev. A 51, 4746–4753 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    V.V. Strelkov, A.F. Sterjanov, N. Yu Shubin, V.T. Platonenko, J. Phys. B At. Mol. Opt. Phys. 39, 577–589 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, A. Zaïr, L. Roso, Eur. Phys. J. D 68, 195 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    J.E. Lennard-Jones, Trans. Faraday Soc. 25, 668 (1929)CrossRefGoogle Scholar
  47. 47.
    L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1935)Google Scholar
  48. 48.
    Slater, Quantum Mechanics of Molecules and Solids, vol. 1 (McGraw-Hill, New York, 1963)zbMATHGoogle Scholar
  49. 49.
    T. Zuo, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 49, 3943 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    D. Shafir, H. Soifer, B.D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M.Y. Ivanov, O. Smirnova, N. Dudovich, Nature 485, 343–346 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations