Applied Physics B

, 124:178 | Cite as

Effect of SiO2 on optical properties of bismuth-doped B2O3–GeO2–SiO2 glasses

  • Zhousu Xu
  • Jinhua Yan
  • Cheng Xu
  • Hang Zhang
  • Gang Chen
  • Xiaofeng LiuEmail author
  • Jianrong QiuEmail author


Bi-doped (60-x)GeO2xSiO2–15B2O3–20MgO–5Al2O3–0.5Bi2O3 (x = 0, 5, 10, 15,20, 25 mol%)glasses were prepared by a conventional melt-quenching process. A broad near-infrared (NIR) photoluminescence (PL) band from Bi centers centered around 1100 nm with a large full-width-at-half-maximum value (~ 195 nm) was observed under excitation at 700 nm. Along with the increase of SiO2 concentration, the NIR PL intensity and the quantum yield (44.1–51.2%) increase first and then decrease, and the PL lifetime increases from 409 to 464 µs. The spectroscopic properties can be interpreted in terms of Bi centers with different valence states, which were confirmed by two-dimension photoluminescence excitation map spectra. The dependence of optical properties on SiO2 concentration is mainly attributed to the change of the optical basicity among different samples. This Bi-doped B2O3–GeO2–SiO2 glass could find potential application in fiber amplifier and laser due to the efficient and tunable broad NIR luminescence.



This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY16F040005), and the National Natural Science Foundation of China (Grant Nos. 11504323, 51772270, and 61775192). This work was also supported by the Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks (Shanghai Jiao Tong University).

Supplementary material

340_2018_7044_MOESM1_ESM.docx (139 kb)
Supplementary material 1 (DOCX 139 KB)


  1. 1.
    Y. Fujimoto, M. Nakatsuka, Infrared luminescence from bismuth-doped silica glass. Jpn. J. Appl. Phys. 40(3B), 279–281 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    S.F. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, J.R. Qiu, Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers. Adv. Funct. Mater. 18(9), 1407–1413 (2008)CrossRefGoogle Scholar
  3. 3.
    P.S. Yu, L.B. Su, W. Guo, J. Xu, Broadband infrared luminescence in Bi-doped silicate glass. J. Noncryst. Solids 464, 34–38 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, E. Dianov, Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system. Appl. Phys. B 95(4), 801–805 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    X.G. Meng, J.R. Qiu, M.Y. Peng, D.P. Chen, Q.Z. Zhao, X.W. Jiang, C.S. Zhu, Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. Opt. Express 13(5), 1635–1642 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Q.B. Guo, B.B. Xu, D.Z. Tan, J.C. Wang, S.H. Zheng, W. Jiang, J.R. Qiu, S.F. Zhou, Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses. Opt. Express 21(23), 27835–27840 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M.Y. Peng, J.R. Qiu, D.P. Chen, X.G. Meng, I. Yang, X.W. Jiang, C.S. Zhu, Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification. Opt. Lett. 29(17), 1998–2000 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    R.F. Wang, J. Liu, Z. Zhang, Luminescence and energy transfer progress in Bi-Yb co-doped germanate glass. J. Alloys Compd. 688, 332–336 (2016)CrossRefGoogle Scholar
  9. 9.
    M.Y. Peng, X.G. Meng, J.R. Qiu, Q.Z. Zhao, C.S. Zhu, GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence. Chem. Phys. Lett. 403(4–6), 410–414 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    B.B. Xu, D.Z. Tan, S.F. Zhou, Z.L. Hong, K.N. Sharafudeen, J.R. Qiu, Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses. Opt. Express 20(27), 29105–29111 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. Moguš-Milanković, A. Šantić, V. Ličina, D.E. Day, Dielectric behavior and impedance spectroscopy of bismuth iron phosphate glasses. J. Noncryst. Solids 351(40–42), 3235–3245 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ruan, E. Wu, H.P. Zeng, S.F. Zhou, G. Lakshminarayana, J.R. Qiu, Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses. Appl. Phys. Lett. 92(10), 1011213 (2008)CrossRefGoogle Scholar
  13. 13.
    B. Denker, B. Galagan, V. Osiko, S. Sverchkov, E. Dianov, Luminescent properties of Bi-doped boro-alumino-phosphate glasses. Appl. Phys. B 87(1), 135–137 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Q.Q. Yan, C. Shen, W. Wang, S.F. Wang, G.R. Chen, Z.W. Xing, Near infrared emission and energy transfer of bismuth–thulium co-doped chalcohalide glasses. J. Am. Ceram. Soc. 93(11), 3539–3541 (2010)CrossRefGoogle Scholar
  15. 15.
    G. Yang, D.P. Chen, W. Wang, Y.S. Xu, H.D. Zeng, Y.X. Yang, G.R. Chen, Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses. J. Eur. Ceram. Soc. 28(16), 3189–3191 (2008)CrossRefGoogle Scholar
  16. 16.
    J.R. Qiu, Bi-doped glass for photonic devices. Int. J. Appl. Glass Sci. 6(3), 275–286 (2015)CrossRefGoogle Scholar
  17. 17.
    E.M. Dianov, V.V. Dvoyrin, V.M. Mashinsky, A.A. Umnikov, M.V. Yashkov, A.N. Guryanov, CW bismuth fibre laser. Quantum Electron. 35(12), 1083–1084 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    N.K. Thipparapu, A. Umnikov, P. Barua, J.K. Sahu, Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320–1360 nm. Opt. lett. 41(7), 1518–1521 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    N. Zhang, K.N. Sharafudeen, G.P. Dong, M.Y. Peng, J.R. Qiu, Mixed network effect of broadband near-infrared emission in Bi-doped B2O3–GeO2 glasses. J. Am. Ceram. Soc. 95(12), 3842–3846 (2012)CrossRefGoogle Scholar
  20. 20.
    Z.S. Xu, C. Xu, Q.B. Guo, X.F. Liu, J.R. Qiu, Effect of TeO2 on near-infrared emission from bismuth centers in borogermanate glasses. J. Am. Ceram. Soc. 99(3), 760–764 (2016)CrossRefGoogle Scholar
  21. 21.
    R.H. Wan, Z.G. Song, Y.J. Li, Y.T. Zhou, Q. Liu, J.B. Qiu, Z.W. Yang, Z.Y. Yin, Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses. J. Appl. Phys. 117(5), 053107 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S.F. Zhou, Q.B. Guo, H. Inoue, Q. Ye, A. Masuno, B.B. Zheng, Y.Z. Yu, J.R. Qiu, Topological engineering of glass for modulating chemical state of dopants. Adv. Mater. 26(47), 7966–7972 (2014)CrossRefGoogle Scholar
  23. 23.
    Z.G. Song, Z.W. Yang, D.C. Zhou, Z.Y. Yin, C. Li, R.F. Wang, J.H. Shang, K. Lou, Y.Y. Xu, X. Yu, J.B. Qiu, The effect of P2O5 on the ultra-broadband near-infrared luminescence from bismuth-doped SiO2–Al2O3–CaO glass. J. Lumin. 131(12), 2593–2596 (2011)CrossRefGoogle Scholar
  24. 24.
    B.I. Denker, S.V. Firstov, B.I. Galagan, S.E. Sverchkov, E.M. Dianov, GeO2 influence on the formation of near-infrared emitting centers in Bi-doped multicomponent silicate glasses. Laser Phys. 24(11), 115301 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    N. Zhang, J.R. Qiu, G.P. Dong, Z.M. Yang, Q.Y. Zhang, M.Y. Peng, Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses. J. Mater. Chem. 22(7), 3154–3159 (2012)CrossRefGoogle Scholar
  26. 26.
    T. Senden, F.T. Rabouw, A. Meijerink, Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals. ACS Nano 9(2), 1801–1808 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Xu, C.Y. Wang, J.D. Yu, R.L. Zhang, J.J. Ren, X.F. Liu, J.R. Qiu, Structure and optical properties of Er-doped CaO–Al2O3 (Ga2O3) glasses fabricated by aerodynamic levitation. J. Am. Ceram. Soc. 100(7), 2852–2858 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Nouri, M. Tavoosi, P. Alizadeh, Processing and optical properties of transparent GeO2–PbO–MgO–MgF2 glass-ceramics. Ceram. Int. 42(15), 17524–17529 (2016)CrossRefGoogle Scholar
  29. 29.
    L.Y. Zhang, H. Li, L.L. Hu, Statistical structure analysis of GeO2 modified Yb3+: phosphate glasses based on raman and FTIR study. J. Alloys Compd. 698, 103–113 (2017)CrossRefGoogle Scholar
  30. 30.
    A.M. Abdelghany, F.H. ElBatal, H.A. ElBatal, F.M. EzzElDin, Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation—a comparative study. J. Mol. Struct. 1074, 503–510 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    D. Dorosz, J. Zmojda, M. Kochanowicz, P. Miluski, P. Jelen, M. Sitarz, Structural and optical study on antimony-silicate glasses doped with thulium ions. Spectrochim. Acta A 134, 608–613 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    M.T. David, T. Antonella, S. Andrijana, L. Esposito, Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. J. Eur. Ceram. Soc. 30(12), 2481–2490 (2010)CrossRefGoogle Scholar
  33. 33.
    J.A. Duffy, M.D. Ingram, Optical basicity-IV: influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem. 37(5), 1203–1206 (1975)CrossRefGoogle Scholar
  34. 34.
    J.A. Duffy, M.D. Ingram, An interpretation of glass chemistry in terms of the optical basicity concept. J. Noncryst. Solids 21(3), 373–410 (1976)ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Veber, A.N. Romanov, O.V. Usovich, Z.T. Fattakhova, E.V. Haula, V.N. Korchak, L.A. Trusov, P.E. Kazin, V.B. Sulimov, V.B. Tsvetkov, Luminescent properties of Bi-doped polycrystalline KAlCl4. Appl. Phys. B 108(4), 733–736 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Y.F. Xue, J.K. Cao, Z.Y. Zhang, L.P. Wang, S.H. Xu, M.Y. Peng, Manipulating Bi NIR emission by adjusting optical basicity, boron and aluminium coordination in borate laser glasses. J. Am. Ceram. Soc. 101(2), 624–633 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Intelligent Optoelectronic TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations