Advertisement

Applied Physics B

, 124:155 | Cite as

Particle swarm optimization to focus coherent light through disordered media

  • Longjie Fang
  • Haoyi Zuo
  • Zuogang Yang
  • Xicheng Zhang
  • Lin Pang
  • Wenxue Li
  • Yu He
  • Xiu Yang
  • Yuezheng Wang
Article
  • 17 Downloads

Abstract

We introduce particle swarm optimization for phase modulation to focus light through disordered media. Using 4096 independently controlled segments of incident wavefront, the intensity at the target is 123 times enhanced over the original intensity of the same output channel. The particle swarm optimization and existing phase control algorithms of focusing through scattering media are compared by the experiment. It is found that particle swarm optimization achieves the highest enhancement with less time compared to genetic algorithm.

Notes

Acknowledgements

The authors thank Fuhua Gao and Jinglei Du for fruitful discussions.

Funding

National Natural Science Foundation of China (NSFC) (61377054, 61675140). Graduate Student’s Research and Innovation Fund of Sichuan University (2018YJSY005).

References

  1. 1.
    M.J. Booth, M.A.A. Neil, R. Juškaitis, T. Wilson, Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Cui, E.J. Mcdowell, C. Yang, An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18, 25–30 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Cui, C. Yang, Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    T.R. Hillman, T. Yamauchi, W. Choi, R.R. Dasari, M.S. Feld, Y. Park, Z. Yaqoob, Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep. 3, 1909–1909 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    C.L. Hsieh, Y. Pu, R. Grange, D. Psaltis, Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    I.M. Vellekoop, A.P. Mosk, Phase control algorithms for focusing light through turbid media. Opt. Commun. 281, 3071–3080 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Conkey, A.N. Brown, A.M. Caravacaaguirre, R. Piestun, Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840–4849 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    L. Fang, X. Zhang, H. Zuo, L. Pang, Focusing light through random scattering media by four-element division algorithm. Opt. Commun. 407, 301–310 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    L. Fang, C. Zhang, H. Zuo, J. Zhu, L. Pang, Four-element division algorithm to focus coherent light through a turbid medium. Chin. Opt. Lett., 15, 102901 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. Gigan, Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601–100601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Controlling light through optical disordered media: transmission matrix approach. New J. Phys. 13, 1–9 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Chaigne, O. Katz, A.C. Boccara, M. Fink, E. Bossy, S. Gigan, Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix. Nat. Photonics 8, 58–64 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    F. Dai, Scattering and transmission matrix representations of multiguide junctions. IEEE Trans. Microw. Theory Tech. 40, 1538–1544 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    H.B. De Aguiar, S. Gigan, S. Brasselet, Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping. Phys. Rev. A 94(4), 043830 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G.F. Gao, J.Z. Zhao, Z.X. Fu, Research on conical hole ladder horn based on transmission matrix method in ultrasonic milling. Adv. Mater. Res. 1027, 262–265 (2014)CrossRefGoogle Scholar
  18. 18.
    G. Guillaume, N. Fortin, Optimized transmission line matrix model implementation for graphics processing units computing in built-up environment. J Build Perform Simul 7, 445–456 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Han, T. Wang, MIMO system based on UWB transmitter channel transmission matrix optimization. Springer International Publishing, Berlin (2014)CrossRefGoogle Scholar
  20. 20.
    J.C. Holzhaider, M.D. Sibley, A.H. Taylor, P.J. Singh, R.D. Gray, G.R. Hunt, The social structure of New Caledonian crows. Anim. Behav. 81, 83–92 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi, Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648–12668 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Patil, Y. Okuyama, Y. Ohkura, T. Toyabe, S. Ihara, Transmission matrix approach for electron transport in inversion layers. Solid-State Electron. 37, 1359–1365 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Tripathi, R. Paxman, T. Bifano, T.K. Jr, Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express 20, 16067–16076 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Shokooh-Saremi, R. Magnusson, Particle swarm optimization and its application to the design of diffraction grating filters. Opt. Lett. 32, 894–896 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Longjie Fang
    • 1
    • 2
    • 3
  • Haoyi Zuo
    • 1
    • 2
  • Zuogang Yang
    • 2
  • Xicheng Zhang
    • 2
  • Lin Pang
    • 2
  • Wenxue Li
    • 2
  • Yu He
    • 2
  • Xiu Yang
    • 1
  • Yuezheng Wang
    • 1
  1. 1.Key Laboratory of High Energy Density Physics and Technology of Ministry of EducationSichuan UniversityChengduChina
  2. 2.College of Physical Science and TechnologySichuan UniversityChengduChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations