Applied Physics B

, 124:151 | Cite as

Soliton molecules in a fiber laser based on optic evanescent field interaction with WS2

  • Bowen Liu
  • Yang Xiang
  • Yiyang LuoEmail author
  • Shuai Zhu
  • Zhijun Yan
  • Qizhen SunEmail author
  • Deming Liu


Passively mode-locked fiber laser serves as an ideal playground for exploring the dynamics of dissipative solitons. Recently, two-dimensional materials have attracted growing interests for their excellent optical properties in the research field of ultrafast optics. Here, we report an observation of soliton molecules in a passively mode-locked fiber laser based on optic evanescent field interaction with tungsten disulfide (WS2), which contributes to the study of multi-soliton complexes. Particularly, the WS2 saturable absorber (SA) is fabricated by optically depositing the few-layer WS2 nanosheets onto microfiber. In the experiment, stable mode-locking operations are realized, which manifest the effective performance of the WS2 SA. Harmonic mode-locking phenomena are also observed, and these separate solitons facilitate the generation of multi-soliton complexes. Furthermore, due to soliton–soliton interaction, wandering particle-like solitons can be bound together to produce soliton molecules and bunch of soliton molecules. These results enrich both the exploration of multi-soliton complexes and potential industrial applications.



This work is supported by the National Natural Science Foundation of China (Grant number: 61775072), the Wuhan Morning Light Plan of Youth Science and Technology (Grant number: 2017050304010280), the Fundamental Research Funds for the Central Universities (HUST, Grant number: 2017KFXKJC002), the Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei (Grant number: 2018CFA004), the Major Projects of Technical Innovation of Hubei (Grant number: 2018AAA040), and the China Postdoctoral Science Foundation funded Project (Grant number: 2018M630853).


  1. 1.
    U. Keller, Nature 424, 831 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    M.E. Fermann, T. Hartl, Nat. Photonics 7, 868 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Grelu, N. Akhmediev, Nat. Photonics 6, 84 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Richardson, R.I. Laming, D.N. Payne, M.W. Phillips, V.J. Matsas, Electron. Lett. 27, 730 (1991)CrossRefGoogle Scholar
  5. 5.
    B. Ortaç, A. Zaviyalov, C.K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, A. Tünnermann, Opt. Lett. 35, 1578 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D.Y. Tang, L.M. Zhao, B. Zhao, A.Q. Liu, Phys. Rev. A 72, 043816 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, H. Zhang, Adv. Opt. Mater. (2018). Google Scholar
  8. 8.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 54, 3112–3115 (2015)CrossRefGoogle Scholar
  9. 9.
    V.J. Matsas, T.P. Newson, D.J. Richardson, D.N. Payne, Electron. Lett. 28, 1391 (1992)CrossRefGoogle Scholar
  10. 10.
    D.J. Richardson, R.I. Laming, D.N. Payne, V.J. Matsas, M.W. Phillips, Electron. Lett. 27, 542 (1991)CrossRefGoogle Scholar
  11. 11.
    F. Ilday, F.W. Wise, T. Sosnowski, Opt. Lett. 27, 1531 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S. Schön, M. Haiml, U. Keller, Appl. Phys. Lett. 77, 782 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19, 3077 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Haris, S.W. Harun, C.L. Anyi, A.R. Muhammad, F. Ahmad, S.J. Tan, R.M. Nor, N.R. Zulkepely, N.M. Ali, H. Arof, J. Mod. Opt. 63, 777 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang, Sci. Rep. 3, 2718 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D.Y. Tang, D. Fan, Opt. Exp. 23, 12823 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Luo, M. Liu, H. Liu, X. Zheng, A. Luo, C. Zhao, H. Zhang, S. Wen, W. Xu, Opt. Lett. 38, 5212 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Opt. Exp. 22, 7249 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Khazaeizhad, S.H. Kassani, H. Jeong, D. Yeom, K. Oh, Opt. Exp. 22, 23732 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, J. Weng, Photonics Res. 3, A79 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao, Sci. Rep. 6, 23583 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, J. Zhao, Sci. Rep. 5, 7965 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    R. Khazaeinezhad, S.H. Kassani, H. Jeong, K.J. Park, B.Y. Kim, D. Yeom, K. Oh, IEEE Photonics Technol. Lett. 27, 1581 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, Opt. Exp. 23, 11453 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Sci. Rep. 3, 2961 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J.G. Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Chem. Soc. Rev. 47, 982–1021 (2018)CrossRefGoogle Scholar
  27. 27.
    H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)CrossRefGoogle Scholar
  28. 28.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1226419 (2013)CrossRefGoogle Scholar
  29. 29.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. Huang, L. Xie, ACS Nano 7, 4610 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    B.A. Malomed, Phys. Rev. A 44, 6954 (1991)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, JOSA B 15, 515 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    D.Y. Tang, B. Zhao, L.M. Zhao, H.Y. Tam, Phys. Rev. E 72, 016616 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    L.M. Zhao, D.Y. Tang, T.H. Cheng, C. Lu, H.Y. Tam, X.Q. Fu, S.C. Wen, Opt. Quantum Electron. 40, 1053 (2008)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Luo, J.W. Cheng, B.W. Liu, Q.Z. Sun, L. Li, S.N. Fu, D.Y. Tang, L.M. Zhao, D.M. Liu, Sci. Rep. 7, 2369 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    D.Y. Tang, L.M. Zhao, B. Zhao, Appl. Phys. B Lasers Opt. 80, 239 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    L. Tong, F. Zi, X. Guo, J. Lou, Opt. Commun. 285, 4641 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Luo, M. Liu, Z. Guo, X. Jiang, A. Luo, C. Zhao, X. Yu, W. Xu, H. Zhang, Opt. Exp. 23, 20030–20039 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    G. Li, Y. Chen, X. Yan, L. Zhao, Appl. Opt. 57, 3507–3510 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    A.N. Pilipetskii, E.A. Golovchenko, C.R. Menyuk, Opt. Lett. 20, 907 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations