Advertisement

Applied Physics B

, 124:149 | Cite as

External cavity quantum cascade laser emitting from 12.3 to 13.2 \(\upmu\)m

  • Sylvain Mathonnière
  • Ján Tomko
  • Yohei Matsuoka
  • Sven Peters
  • Jan Kischkat
  • Mykhaylo Semtsiv
  • W. Ted Masselink
Article
  • 267 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

We describe a long-wavelength external ccavity quantum cascade laser, emitting from 12.3 to \(13.2\ \upmu \text {m}\) integrated into a compact design to promote portability. For this purpose, a new type of anti-reflection coating was designed as well as a new way of measuring its performance. Finally, a portion of the absorption spectrum of ammonia vapor was recorded by tuning the laser, which demonstrates the spectroscopic capacity of this EC-QCL.

Notes

Acknowledgements

The authors thank Dr. Sascha Kalusniak for the FTIR measurement. This work was supported by the Mid-TECH project which has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 642661.

References

  1. 1.
    J. Faist, F. Capasso, D. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade lasers. Science 264(5158), 553–556 (1994).  https://doi.org/10.1126/science.264.5158.553 CrossRefADSGoogle Scholar
  2. 2.
    O. Cathabard, R. Teissier, J. Devenson, J.C. Moreno, A.N. Baranov, Quantum cascade lasers emitting near 2.6 \(\upmu\)m. Appl. Phys. Lett. 96(14), 141110 (2010)CrossRefGoogle Scholar
  3. 3.
    M.P. Semtsiv, M. Wienold, S. Dressler, W.T. Masselink, Short-wavelength (\(\lambda \approx 3.05 \upmu \text{ m }\)) inp-based strain-compensated quantum-cascade laser. Appl. Phys. Lett. 90(5), 051111 (2007).  https://doi.org/10.1063/1.2437108 CrossRefGoogle Scholar
  4. 4.
    K. Ohtani, M. Beck, J. Faist, Double metal waveguide InGaAs/InAlAs quantum cascade lasers emitting at \(24 \upmu \text{ m }\). Appl. Phys. Lett. 105(12), 121115 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Scalari, C. Walther, M. Fischer, M. I. Amanti, R. Terazzi, N. Hoyler, H. Beere, D. Ritchie, J. Faist, Recent progress on long wavelength quantum cascade lasers between 1-2 THz. in LEOS 2007—IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, pp. 755–756 (2007)Google Scholar
  6. 6.
    A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Real-time terahertz imaging over a standoff distance (>25meters). Appl. Phys. Lett. 89(14), 141125 (2006)CrossRefADSGoogle Scholar
  7. 7.
    D. Mammez, C. Stoeffler, J. Cousin, R. Vallon, M. Mammez, L. Joly, B. Parvitte, V. Zéninari, Photoacoustic gas sensing with a commercial external cavity-quantum cascade laser at \(10.5\ \upmu \text{ m }\). Infrared Phys. Technol. 61(Supplement C), 14–19 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Kachanov, S. Koulikov, F.K. Tittel, Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a \(10.4 \upmu \text{ m }\) external cavity quantum cascade laser. Appl. Phys. B 110(1), 47–56 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, E. Gini, External cavity quantum cascade laser tunable from 7.6 to \(11.4 \upmu \text{ m }\). Appl. Phys. Lett. 95(6), 061103 (2009).  https://doi.org/10.1063/1.3193539 CrossRefGoogle Scholar
  10. 10.
    X. Huang, W.O. Charles, C. Gmachl, Temperature-insensitive long-wavelength (\(\lambda \approx 14 \upmu \text{ m }\)) quantum cascade lasers with low threshold. Opt. Express 19, 8297–8302 (2011).  https://doi.org/10.1364/OE.19.008297 CrossRefGoogle Scholar
  11. 11.
    S. Mathonnière, M. Semtsiv, W.T. Masselink, Thermal annealing of lattice-matched InGaAs/InAlAs quantum-cascade lasers. J. Cryst. Growth 477, 258–261 (2017).  https://doi.org/10.1016/j.jcrysgro.2017.01.029 CrossRefADSGoogle Scholar
  12. 12.
    J. Kischkat, S. Peters, M.P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, W.T. Masselink, Ultra-narrow angle-tunable fabry perot bandpass interference filter for use as tuning element in infrared lasers. Infrared Phys. Technol. 67, 432–435 (2014).  https://doi.org/10.1016/j.infrared.2014.08.020 CrossRefADSGoogle Scholar
  13. 13.
    J. Nguyen, J.S. Yu, A. Evans, S. Slivken, M. Razeghi, Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers. Appl. Phys. Lett. 89(11), 111113 (2006)CrossRefADSGoogle Scholar
  14. 14.
    J.-F. Kischkat, External cavity quantum cascade lasers. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät (2015)Google Scholar
  15. 15.
    A. Hugi, Single-mode and comb operation of broadband quantum cascade lasers. Ph.D. thesis, ETH Zürich (2013)Google Scholar
  16. 16.
    Y. Matsuoka, S. Mathonnèire, S. Peters, W.T. Masselink, Broadband multilayer anti-reflection coating for mid-infrared range from \(7 \upmu \text{ m }\) to \(12 \upmu \text{ m }\). Appl. Opt. 57(7), 1645–1649 (2018).  https://doi.org/10.1364/AO.57.001645 CrossRefGoogle Scholar
  17. 17.
    I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan, P. Bernath, M. Birk, V. Boudon, A. Campargue, K. Chance, B. Drouin, J.-M. Flaud, R. Gamache, J. Hodges, D. Jacquemart, V. Perevalov, A. Perrin, K. Shine, M.-A. Smith, J. Tennyson, G. Toon, H. Tran, V. Tyuterev, A. Barbe, A. Császár, V. Devi, T. Furtenbacher, J. Harrison, J.-M. Hartmann, A. Jolly, T. Johnson, T. Karman, I. Kleiner, A. Kyuberis, J. Loos, O. Lyulin, S. Massie, S. Mikhailenko, N. Moazzen-Ahmadi, H. Müller, O. Naumenko, A. Nikitin, O. Polyansky, M. Rey, M. Rotger, S. Sharpe, K. Sung, E. Starikova, S. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E. Zak, The hitran2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).  https://doi.org/10.1016/j.jqsrt.2017.06.038. http://www.sciencedirect.com/science/article/pii/S0022407317301073 (hITRAN2016 Special Issue)
  18. 18.
    B.G. Lee, M.A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D.C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, J. Faist, Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 91(23), 231101 (2007).  https://doi.org/10.1063/1.2816909 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Humboldt University of BerlinBerlinGermany
  2. 2.Sentench GmbHBerlinGermany

Personalised recommendations