Advertisement

Applied Physics B

, 124:141 | Cite as

Enhanced terahertz emission from quantum dot by graphene-coated nanoparticle

Article
  • 33 Downloads

Abstract

The terahertz (THz) emission from quantum dots in close proximity to graphene-coated nanoparticles is studied via phenomenological modeling with particular interest in the possibility of enhancement for such emission via the excitation of the graphene plasmons. It is shown that depending on various factors such as the damping factor and the Fermi level of the graphene, as well as the size and core material of the coated particle, such plasmonic-enhanced THz emission is indeed possible. This thus opens up a new pathway to provide intense THz sources for future applications.

Keywords

THz emission Plasmonic enhancement Graphene-coated nanoparticles 

Notes

Acknowledgements

One of us (PTL) would like to thank Professor Hai-Pang Chiang for hosting his summer visit at the National Taiwan Ocean University where part of this work was completed. We also want to thank Dr. Huai-Yi Xie for help with the figures.

References

  1. 1.
    Nat. Photonics 7(9), 665 (2013)Google Scholar
  2. 2.
    M. Rahm, A. Nahata, T. Akalin, M. Beruete, M. Sorolla, N. J. Phys. 17, 100201 (2015)CrossRefGoogle Scholar
  3. 3.
    R.A. Lewis, J. Phys. D Appl. Phys. 47, 374001 (2014)CrossRefGoogle Scholar
  4. 4.
    R.R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus, E. Glarke, E.U. Rafailov, Laser Photonics Rev. 10, 772 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    F. Carreno, M.A. Anton, S. Melle, O.G. Calderon, E. Cabrera-Granado, J. Cox, M.R. Singh, A. Egatz-Gomez, J. Appl. Phys. 115, 064304 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S. Xiao, X. Zhu, B.H. Li, N.A. Mortensen, Front. Phys. 11, 117801 (2016)CrossRefGoogle Scholar
  7. 7.
    A.N. Grigorenko, M. Polini, K.S. Novoselov Nat. Photonics 6, 749 (2012)Google Scholar
  8. 8.
    T. Low, P. Avouris, ACS Nano 8, 1086 (2014)Google Scholar
  9. 9.
    F.J.G. de Abajo, ACS Photonics 1, 135 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Liu, P. Kumar, Y. Hu, G.J. Cheng, J. Irudayaraj, J. Phys. Chem. C 119, 6331 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Christensen, A.-P. Jauho, M. Wubs, N.A. Mortensen, Phys. Rev. B 91, 12541 (2015)Google Scholar
  12. 12.
    Z. Shi, Y. Yang, G. Lin, Z.Y. Li, Chin. Phys. B 25, 057803 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    T. Bian, R. Chang, P.T. Leung, Plasmonics 11, 1239 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Fu, J. Zhang, J.R. Lakowicz, J. Fluoresc. 17, 811 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Ruppin, J. Chem. Phys. 76, 1681 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    C.F. Bohren, A.J. Hunt, Can. J. Phys. 55, 1930 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    H.Y. Chung, P.T. Leung, D.P. Tsai, Opt. Express 21, 26483 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Y.S. Kim, P.T. Leung, T.F. George, Surf. Sci. 185, 1 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    B. Yang, T. Wu, Y. Yang, X. Zhang, J. Opt. 17, 035002 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    T. Nakamura, S. Hayashi, Jpn. J. Appl. Phys. 44, 6833 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Tabata et al., IEEE Nucl. Sci. Conf. Rec. 2, 816 (2005)Google Scholar
  23. 23.
    R. Ruppin, Surf. Sci. 127, 108 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, Nano Lett. 7, 2101 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    R. Ruppin, Phys. Rev. B 45, 11209 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringPortland State UniversityPortlandUSA
  2. 2.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations