Advertisement

Applied Physics B

, 124:132 | Cite as

Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane

  • Nishant Nookala
  • Jiaming Xu
  • Omri Wolf
  • Stephen March
  • Raktim Sarma
  • Seth Bank
  • John Klem
  • Igal Brener
  • Mikhail Belkin
Article
  • 241 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

We report the design and operation of a nonlinear intersubband polaritonic metasurface for mid-infrared second harmonic generation. The metasurface is made of plasmonic nanoresonators filled with a multiple-quantum-well semiconductor heterostructure. Unlike the previously reported nonlinear intersubband polaritonic metasurfaces that employ full-metal backplanes below the etched metal–semiconductor nanoresonators, the metasurface reported here employs an incomplete backplane that is complementary to the pattern of the top metallization of the etched semiconductor heterostructure nanoresonators. The new approach produces high-electric-field localization and enhancement in the nanoresonators, while requiring simplified fabrication and allowing the metasurface to operate in both transmission and reflection regimes.

Notes

Acknowledgements

Parts of this work were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

References

  1. 1.
    B. Corcoran, C. Monat, C. Grillet, D.J. Moss, B.J. Eggleton, T.P. White, L. O’Faolain, T.F. Krauss, Nat. Photonics 3, 206 (2009)CrossRefADSGoogle Scholar
  2. 2.
    C. Wang, Z. Li, M.H. Kim, X. Xiong, X.F. Ren, G.C. Guo, N. Yu, M. Lončar, Nat. Commun. 8, (2017)Google Scholar
  3. 3.
    P.S. Kuo, J. Bravo-Abad, G.S. Solomon, Nat. Commun. 5, (2014)Google Scholar
  4. 4.
    M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, M. Finazzi, Nat. Nanotechnol. 10, 412 (2015)CrossRefADSGoogle Scholar
  5. 5.
    N. Yu, F. Capasso, Nat. Mater. 13, 139 (2014)CrossRefADSGoogle Scholar
  6. 6.
    A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1289 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Nature 511, 65 (2014)CrossRefADSGoogle Scholar
  8. 8.
    J. Lee, N. Nookala, J.S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Adv. Opt. Mater. 4, 664 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Nookala, J. Lee, M. Tymchenko, J. Sebastian Gomez-Diaz, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M.-C. Amann, A. Alù, M.A. Belkin, Optica 3, 283 (2016)CrossRefGoogle Scholar
  10. 10.
    R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2008)Google Scholar
  11. 11.
    G. Li, S. Chen, N. Pholchai, B. Reineke, P.W.H. Wong, E.Y.B. Pun, K.W. Cheah, T. Zentgraf, S. Zhang, Nat. Mater. 14, 607 (2015)CrossRefADSGoogle Scholar
  12. 12.
    N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Nat. Photonics 9, 180 (2015)CrossRefADSGoogle Scholar
  13. 13.
    O. Wolf, S. Campione, A. Benz, A.P. Ravikumar, S. Liu, T.S. Luk, E.A. Kadlec, E.A. Shaner, J.F. Klem, M.B. Sinclair, I. Brener, Nat. Commun. 6, 7667 (2015)CrossRefADSGoogle Scholar
  14. 14.
    O. Wolf, A.A. Allerman, X. Ma, J.R. Wendt, A.Y. Song, E.A. Shaner, I. Brener, Appl. Phys. Lett. 107, 151108 (2015)CrossRefADSGoogle Scholar
  15. 15.
    M. Tymchenko, J.S. Gomez-Diaz, J. Lee, N. Nookala, M.A. Belkin, A. Alù, Phys. Rev. Lett. 115, 207403 (2015)CrossRefADSGoogle Scholar
  16. 16.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 2002)Google Scholar
  17. 17.
    F.B.P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, M. Wegener, Opt. Lett. 34, 1997 (2009)CrossRefADSGoogle Scholar
  18. 18.
    W. Fan, S. Zhang, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Opt. Express 14, 9570 (2006)CrossRefADSGoogle Scholar
  19. 19.
    J.S. Gomez-Diaz, M. Tymchenko, J. Lee, M.A. Belkin, A. Alù, Phys. Rev. B 92, 125429 (2015)CrossRefADSGoogle Scholar
  20. 20.
    I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)CrossRefADSGoogle Scholar
  21. 21.
    M. Beeler, E. Trichas, E. Monroy, Semicond. Sci. Technol. 28, 74022 (2013)CrossRefGoogle Scholar
  22. 22.
    E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, J. Nagle, Science 271, 168 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Center for Integrated Nanotechnologies, Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations